
SCALAR QED

Created: December 4, 2020

Tony Menzo

1 Scalar QED

Consider the theory of a complex scalar field Φ , describing particles and antiparticles χ^- and χ^+ of electric charge $\mp e$, respectively, interacting with the electromagnetic field A^μ . The Lagrangian density is given by

$$\mathcal{L} = -\frac{1}{4}F_{\mu\nu}F^{\mu\nu} + (D_\mu\Phi)^*D^\mu\Phi - M^2\Phi^*\Phi \quad (1)$$

Where $D_\mu \equiv \partial_\mu + ieA_\mu$.

1.1 Propagator

The free propagator is defined by

$$\begin{aligned} i\Delta(x - y) &\equiv \langle 0 | T\{\Phi(x)\Phi^*(y)\} | 0 \rangle \\ &= \langle 0 | \Phi(x)\Phi^*(y) | 0 \rangle \Theta(x_0 - y_0) + \langle 0 | \Phi^*(y)\Phi(x) | 0 \rangle \Theta(y_0 - x_0) \end{aligned} \quad (2)$$

A free real scalar field can be described by the following operator acting on Fock space

$$\phi(x) = \int \frac{d^3\mathbf{p}}{(2\pi)^{3/2}\sqrt{2p^0}} [a(\mathbf{p})e^{-ip\cdot x} + a^{c\dagger}(\mathbf{p})e^{ip\cdot x}] \quad (3)$$

With the creation and annihilation operators obeying (anti-)commutation relations

$$[a(\mathbf{p}), a^\dagger(\mathbf{p}')]_\mp = \delta^3(\mathbf{p} - \mathbf{p}'), \quad [a(\mathbf{p}), a(\mathbf{p}')]_\mp = [a^\dagger(\mathbf{p}), a^\dagger(\mathbf{p}')]_\mp = 0 \quad (4)$$

A complex scalar field can be described by two independent real scalar fields

$$\begin{aligned} \Phi(x) &= \frac{1}{\sqrt{2}} (\phi_1(x) + i\phi_2(x)) \\ &= \int \frac{d^3\mathbf{p}}{(2\pi)^{3/2}\sqrt{2p^0}} [a(\mathbf{p})e^{-ip\cdot x} + b^\dagger(\mathbf{p})e^{ip\cdot x}] \end{aligned} \quad (5)$$

$$\Phi^*(x) = \int \frac{d^3\mathbf{p}}{(2\pi)^{3/2}\sqrt{2p^0}} [a^\dagger(\mathbf{p})e^{ip\cdot x} + b(\mathbf{p})e^{-ip\cdot x}] \quad (6)$$

Where the $a(\mathbf{p})$ operators create and annihilate single scalar particle states with positive charge ($\hat{Q} = +1$) and the $b(\mathbf{p})$ operators create and annihilate single scalar particle states with negative charge ($\hat{Q} = -1$). This can be seen by computing the

conserved current $j^\mu = i\Phi^\dagger \bar{\partial}^\mu \Phi$. Where $\bar{\partial}^\mu$ denotes differentiation to the right with a plus sign and to the left with a minus sign. The charge operator \hat{Q} is then given by

$$\hat{Q} = \int d^3\mathbf{x} j^0 = \int \frac{d^3\mathbf{p}}{(2\pi)^3 2p^0} [a^\dagger(\mathbf{p})a(\mathbf{p}) - b^\dagger(\mathbf{p})b(\mathbf{p})] \quad (7)$$

From the commutations relations of a real scalar field Eq.(4) we have that

$$\begin{aligned} [a(\mathbf{p}), a^\dagger(\mathbf{p}')]_\mp &= \delta^3(\mathbf{p} - \mathbf{p}') \\ [b(\mathbf{p}), b^\dagger(\mathbf{p}')]_\mp &= \delta^3(\mathbf{p} - \mathbf{p}') \end{aligned} \quad (8)$$

Evaluating the propagator explicitly we see

$$\begin{aligned} i\Delta(x - y) &= \int \frac{d^3\mathbf{p}}{(2\pi)^{3/2} \sqrt{2p^0}} \frac{d^3\mathbf{q}}{(2\pi)^{3/2} \sqrt{2q^0}} \\ &\quad \times \left[\Theta(x_0 - y_0) \langle 0 | (a(\mathbf{p})e^{-ip \cdot x} + b^\dagger(\mathbf{p})e^{ip \cdot x}) (a^\dagger(\mathbf{q})e^{ip \cdot y} + b(\mathbf{q})e^{-iq \cdot y}) | 0 \rangle \right. \\ &\quad \left. + \Theta(y_0 - x_0) \langle 0 | (a^\dagger(\mathbf{q})e^{iq \cdot y} + b(\mathbf{q})e^{-iq \cdot y}) (a(\mathbf{p})e^{-ip \cdot x} + b^\dagger(\mathbf{p})e^{ip \cdot x}) | 0 \rangle \right] \end{aligned} \quad (9)$$

$$\begin{aligned} &= \int \frac{d^3\mathbf{p}}{(2\pi)^{3/2} \sqrt{2p^0}} \frac{d^3\mathbf{q}}{(2\pi)^{3/2} \sqrt{2q^0}} \left[\Theta(x_0 - y_0) e^{i(q \cdot y - p \cdot x)} \langle 0 | a(\mathbf{p})a^\dagger(\mathbf{q}) | 0 \rangle \right. \\ &\quad \left. + \Theta(y_0 - x_0) e^{i(p \cdot x - q \cdot y)} \langle 0 | b(\mathbf{p})b^\dagger(\mathbf{q}) | 0 \rangle \right] \end{aligned} \quad (10)$$

$$= \int \frac{d^3\mathbf{p}}{(2\pi)^{3/2} \sqrt{2p^0}} \frac{d^3\mathbf{q}}{(2\pi)^{3/2} \sqrt{2q^0}} \delta^3(\mathbf{p} - \mathbf{q}) \left[\Theta(x_0 - y_0) e^{i(q \cdot y - p \cdot x)} + \Theta(y_0 - x_0) e^{i(p \cdot x - q \cdot y)} \right] \quad (11)$$

$$= \int \frac{d^3\mathbf{p}}{(2\pi)^3 2p^0} [\Theta(x_0 - y_0) e^{-ip \cdot (x-y)} + \Theta(y_0 - x_0) e^{ip \cdot (x-y)}] \quad (12)$$

Using the Fourier representation of the Heaviside-step function

$$\Theta(t) = \frac{-1}{2\pi i} \int_{-\infty}^{\infty} ds \frac{\exp(-ist)}{s + i\epsilon} \quad (13)$$

and evaluating 12 gives

$$= \int d^4p \left[\frac{1}{(2\pi)^4} \frac{i}{p^2 - M^2 + i\epsilon} \right] e^{ip \cdot (x-y)}. \quad (14)$$

1.2 External legs

We note that the creation and annihilation operators can be written in the following form which may prove useful

$$\begin{aligned}
b^\dagger(\mathbf{p}) &= \int \frac{d^3\mathbf{x}}{(2\pi)^{3/2}\sqrt{2p^0}} \Phi(x) i \overleftrightarrow{\partial}_t e^{-ip\cdot x} \\
&= \int \frac{d^3\mathbf{q}}{(2\pi)^3\sqrt{2q^0}\sqrt{2p^0}} \int d^3\mathbf{x} \left\{ [a(\mathbf{q})e^{-iq\cdot x} + b^\dagger(\mathbf{q})e^{iq\cdot x}] i \overleftrightarrow{\partial}_t e^{-ip\cdot x} \right\} \\
&= \int \frac{d^3\mathbf{q}}{(2\pi)^3\sqrt{2q^0}\sqrt{2p^0}} \int d^3\mathbf{x} \left\{ (p^0 + q^0)e^{i(q-p)\cdot x} a^\dagger(\mathbf{q}) + (p^0 - q^0)e^{-i(p+q)\cdot x} a(\mathbf{q}) \right\}
\end{aligned} \tag{15}$$

Using

$$\int d^3\mathbf{x} e^{i(q-p)\cdot x} = (2\pi)^3 \delta^3(\mathbf{p} - \mathbf{q}) \tag{16}$$

And then integrating over the delta-function

$$= \frac{1}{(2\pi)^3 2p^0} (2\pi)^3 2p^0 b^\dagger(\mathbf{p}) = b^\dagger(\mathbf{p}) \tag{17}$$

Similarly,

$$a^\dagger(\mathbf{p}) = \int \frac{d^3\mathbf{x}}{(2\pi)^{3/2}\sqrt{2p^0}} \Phi^*(x) i \overleftrightarrow{\partial}_t e^{-ip\cdot x} \tag{18}$$

These don't seem to be of any help here but, the explicit form is still interesting and could be useful.

The external legs contain contractions of the form

$$\begin{aligned}
\langle 0 | \Phi(x) b^\dagger(\mathbf{k}) | 0 \rangle &= | 0 \rangle \int \frac{d^3\mathbf{p}}{(2\pi)^{3/2}\sqrt{2p^0}} [a(\mathbf{p})e^{-ip\cdot x} + b^\dagger(\mathbf{p})e^{ip\cdot x}] b^\dagger(\mathbf{k}) + \dots | 0 \rangle \\
&= \left[\frac{1}{(2\pi)^{3/2}\sqrt{2p^0}} \right] \int d^3\mathbf{p} e^{ip\cdot x} \delta^4(\mathbf{p} - \mathbf{k}) \langle 0 | \dots | 0 \rangle \\
&= \left[\frac{1}{(2\pi)^{3/2}\sqrt{2p^0}} \right] e^{ik\cdot x} \langle 0 | \dots | 0 \rangle
\end{aligned} \tag{19}$$

Where I have used the derived scalar commutation given in Eq.(8). All other external legs will follow the same general calculation, always leaving a factor of $1/(2\pi)^{3/2}\sqrt{2p^0}$ as the coefficient.

1.3 Feynman Rules

The above external states are contracted with other fields when we evaluate the time-ordered product, we obtain factors of the form

$$\langle 0 | a \quad (20)$$

All of the information about interactions between the scalar particles and photons is held in the covariant derivative term in the Lagrangian density

$$\begin{aligned} (D_\mu \Phi(x))^* D^\mu \Phi(x) &= (\partial_\mu \Phi^*(x) - ie A_\mu(y) \Phi^*(x)) (\partial^\mu \Phi(x) + ie A^\mu(x) \Phi(x)) \quad (21) \\ &= \partial_\mu \Phi^*(x) \partial^\mu \Phi(x) + ie A^\mu(x) \Phi(x) \partial_\mu \Phi^*(x) - ie A_\mu(x) \Phi^*(x) \partial^\mu \Phi(x) + e^2 A_\mu(x) A^\mu(x) |\Phi(x)|^2 \end{aligned}$$

The first term is just the free kinetic term for the complex scalar field. Fourier transforming to momentum space and focusing on the second and third term

$$\begin{aligned} ie \int d^4x [A_\mu(x) \Phi(x) \partial^\mu \Phi^*(x) - A_\mu(x) \Phi^*(x) \partial^\mu \Phi(x)] \\ \rightsquigarrow i^2 e \int d^4x \int \frac{d^4k}{(2\pi)^4} \frac{d^4p}{(2\pi)^4} \frac{d^4p'}{(2\pi)^4} [-A_\mu(k) \Phi(p) p^\mu \Phi^*(p') + A_\mu(k) \Phi^*(p') p^\mu \Phi(p)] e^{-ix \cdot (p+k-p')} \\ = \int \frac{d^4k}{(2\pi)^4} \frac{d^4p}{(2\pi)^4} \frac{d^4p'}{(2\pi)^4} A_\mu(k) \Phi^*(p') \Phi(p) e(p' - p)^\mu (2\pi)^4 \delta^4(p - p' + k) \quad (22) \end{aligned}$$

The Feynman rules are obtained from the time ordered products of fields from a perturbation expansion of $e^{i\mathcal{L}_{\text{int}}}$. Thus, we see that the above term corresponds to the vertex $ie(p' - p)^\mu$ with external lines corresponding to Φ , Φ^* , and A_μ with an overall energy-momentum conserving delta-function $(2\pi)^4 \delta^4(p + p' - k)$. Pictorially this is represented as

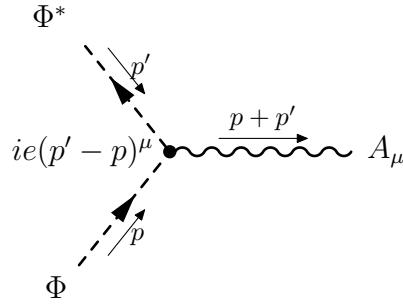


Figure 1: Scalar QED vertex

For the final term in Eq.(21) we have

$$\begin{aligned} e^2 \int d^4x [g_{\mu\nu} A^\nu(x) A^\mu(x) |\Phi(x)|^2] \\ \rightsquigarrow \int d^4x \int \frac{d^4k}{(2\pi)^4} \frac{d^4k'}{(2\pi)^4} \frac{d^4p}{(2\pi)^4} \frac{d^4p'}{(2\pi)^4} [e^2 g_{\mu\nu} A^\nu(k) A^\mu(k') \Phi(p) \Phi^*(p') e^{-ix \cdot (p+p'-k-k')}] \end{aligned} \quad (23)$$

$$= \int \frac{d^4k}{(2\pi)^4} \frac{d^4k'}{(2\pi)^4} \frac{d^4p}{(2\pi)^4} \frac{d^4p'}{(2\pi)^4} [A^\nu(k) A^\mu(k') \Phi(p) \Phi^*(p') e^2 g_{\mu\nu} (2\pi)^4 \delta^4(p+p'-k-k')] \quad (24)$$

Including a factor of i from the expansion of $e^{i\mathcal{L}_{\text{int}}}$ we have a four-particle interaction vertex of with a vertex factor $2ie^2(2\pi)^4\delta^4(p+p'-k)$. The factor of 2 comes from the necessary symmetry factor which accounts for the total number of A_μ contractions which result in the same amplitude. Pictorially this vertex is represented as

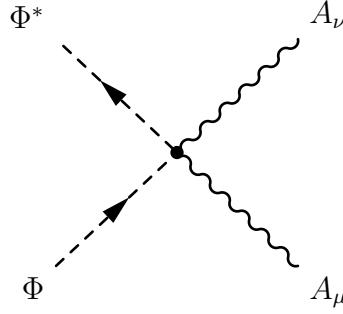


Figure 2: Scalar QED vertex

1.4 $e^+e^- \rightarrow \chi^+\chi^-$ scattering

The lowest order tree-level for $e^+e^- \rightarrow \chi^+\chi^-$ is given by

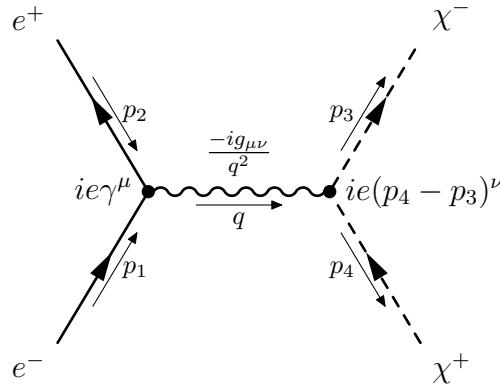


Figure 3: s -channel Feynman diagram

Our Feynman rules give the transition amplitude:

$$\begin{aligned}
-2\pi i\delta^4(p_1 + p_2 - p_3 - p_4)\mathcal{M} = & \int \frac{d^4q}{(2\pi)^4} \left[\bar{v}(\mathbf{p}_2, \sigma_2) i e \gamma^\mu \frac{u(\mathbf{p}_1, \sigma_1)}{(2\pi)^{3/2}} \frac{1}{(2\pi)^4} \frac{-ig_{\mu\nu}}{q^2} ie(p_4 - p_3)^\nu \frac{1}{(2\pi)^{3/2} \sqrt{2p_3^0}} \frac{1}{(2\pi)^{3/2} \sqrt{2p_4^0}} \right] \\
& \times (2\pi)^4 \delta^4(p_1 + p_2 - q) (2\pi)^4 \delta^4(q - p_3 - p_4) \\
& = \frac{ie^2}{2(2\pi)^2 \sqrt{p_3^0 p_4^0}} \left[\bar{v}_2 \frac{\not{p}_4 - \not{p}_3}{(p_1 + p_2)^2} u_1 \right] \delta^4(p_1 + p_2 - p_3 - p_4) \tag{25}
\end{aligned}$$

Leaving us with our matrix element

$$\mathcal{M} = \frac{-e^2}{2(2\pi)^3 \sqrt{p_3^0 p_4^0}} \left[\bar{v}_2 \frac{\not{p}_4 - \not{p}_3}{(p_1 + p_2)^2} u_1 \right] \tag{26}$$

The squared matrix element is then given by

$$|\mathcal{M}|^2 = \frac{e^4}{4(2\pi)^6 p_3^0 p_4^0} \left[\bar{v}_2 \frac{\not{p}_4 - \not{p}_3}{(p_1 + p_2)^2} u_1 \right] \left[\bar{v}_2 \frac{\not{p}_4 - \not{p}_3}{(p_1 + p_2)^2} u_1 \right]^* \tag{27}$$

$$= \frac{e^4}{4(2\pi)^6 p_3^0 p_4^0} \left[\bar{v}_2 \frac{\not{p}_4 - \not{p}_3}{(p_1 + p_2)^2} u_1 \right] \left[\bar{u}_1 \frac{\not{p}_4 - \not{p}_3}{(p_1 + p_2)^2} v_2 \right] \tag{28}$$

Now we want to average over the initial helicites

$$\langle |\mathcal{M}|^2 \rangle = \frac{e^4}{4(2\pi)^6 p_3^0 p_4^0} \frac{1}{4} \sum_{\sigma_1, \sigma_2} \left[\bar{v}_2 \frac{\not{p}_4 - \not{p}_3}{(p_1 + p_2)^2} u_1 \right] \left[\bar{u}_1 \frac{\not{p}_4 - \not{p}_3}{(p_1 + p_2)^2} v_2 \right] \tag{29}$$

Using our completeness relation for spinors Eq.(5.7) in the lecture notes

$$= \frac{e^4}{32(2\pi)^6 p_1^0 p_3^0 p_4^0} \sum_{i,j} \left[\frac{\not{p}_4 - \not{p}_3}{(p_1 + p_2)^2} (\not{p}_1 + m_e) \frac{\not{p}_4 - \not{p}_3}{(p_1 + p_2)^2} \right]_{ij} \sum_{\sigma_2} [v_2 \bar{v}_2]_{ji} \tag{30}$$

$$= \frac{e^4}{64(2\pi)^6 p_1^0 p_2^0 p_3^0 p_4^0} \frac{1}{(p_1 + p_2)^4} \text{Tr}[(\not{p}_4 - \not{p}_3)(\not{p}_1 + m_e)(\not{p}_4 - \not{p}_3)(\not{p}_2 - m_e)] \tag{31}$$

Ignoring the electron mass we are left with

$$= \frac{e^4}{64(2\pi)^6 p_1^0 p_2^0 p_3^0 p_4^0} \frac{1}{(p_1 + p_2)^4} \text{Tr}[(\not{p}_4 - \not{p}_3)\not{p}_1(\not{p}_4 - \not{p}_3)\not{p}_2] \quad (32)$$

$$= \frac{e^4}{16(2\pi)^6 p_1^0 p_2^0 p_3^0 p_4^0} \frac{1}{(p_1 + p_2)^4} \left[2(p_2 \cdot p_3 - p_2 \cdot p_4)(p_1 \cdot p_3 - p_1 \cdot p_4) - (p_1 \cdot p_2)(p_3 - p_4)^2 \right] \quad (33)$$

In the center of mass frame $\mathbf{p}_1 = -\mathbf{p}_2 \equiv \mathbf{p}$, $p_1 + p_2 = (2E_{\mathbf{p}}, \mathbf{0})$ thus, $p_3 + p_4 = (2E_p, \mathbf{p})$. Define $E_{\mathbf{p}} \equiv E$ and assuming $E \gg m_e$ i.e. $|\mathbf{p}| \approx E$

$$p_1 = (E, \mathbf{p}), \quad p_2 = (E, -\mathbf{p}) \quad (34)$$

$$p_3 = (E', \mathbf{p}'), \quad p_4 = (E', -\mathbf{p}') \quad (35)$$

Thus,

$$(p_2 \cdot p_3) = (p_1 \cdot p_4) = E^2 + \mathbf{p} \cdot \mathbf{p}' = E^2 + |\mathbf{p}||\mathbf{p}'| \cos \theta \approx E(E + |\mathbf{p}'| \cos \theta) \quad (36)$$

$$(p_1 \cdot p_3) = (p_2 \cdot p_4) = E^2 - \mathbf{p} \cdot \mathbf{p}' = E^2 - |\mathbf{p}||\mathbf{p}'| \cos \theta \approx E(E - |\mathbf{p}'| \cos \theta) \quad (37)$$

$$(p_1 \cdot p_2) = E^2 + |\mathbf{p}|^2 \approx 2E^2 \quad (38)$$

$$(p_3 \cdot p_4) = E^2 + |\mathbf{p}'|^2 \quad (39)$$

Substituting these expressions into Eq.(33) gives

$$= \frac{e^4}{2(2\pi)^6 E^4} \frac{1}{16E^2} \left[E^2 |\mathbf{p}'|^2 (1 - \cos^2 \theta) \right] \quad (40)$$

$$\langle |\mathcal{M}|^2 \rangle = \frac{e^4 |\mathbf{p}'|^2}{32(2\pi)^6 E^6} \sin^2 \theta \quad (41)$$

From Eq.(2.55) in the lecture notes the differential cross section is given by

$$\frac{d\sigma}{d\Omega} = \frac{(2\pi)^4 |\mathbf{p}'| E_1 E_2 E_3 E_4}{(E_1 + E_2)^2 |\mathbf{p}|} \langle |\mathcal{M}|^2 \rangle = \frac{(2\pi)^4 |\mathbf{p}'| E^4}{4} \langle |\mathcal{M}|^2 \rangle = \frac{e^4 |\mathbf{p}'|^3}{128(2\pi)^2 E^5} \sin^2 \theta \quad (42)$$

Defining $s \equiv (2E)^2$ and $\alpha = e^2/(4\pi)$

$$\frac{d\sigma(e^+e^- \rightarrow \chi^+\chi^-)}{d\Omega} = \frac{\alpha^2}{8s} \frac{(E^2 - m_\chi^2)^{3/2}}{E^3} \sin^2 \theta = \frac{\alpha^2}{8s} \left(1 - \frac{m_\chi^2}{E^2} \right)^{3/2} \sin^2 \theta \quad (43)$$

The total cross section is given by

$$\sigma(e^+e^- \rightarrow \chi^+\chi^-) = \frac{2\pi\alpha^2}{8s} \left(1 - \frac{m_\chi^2}{E^2}\right)^{3/2} \int_{-1}^1 (1 - \cos^2 \theta) d\cos \theta \quad (44)$$

$$= \frac{\pi\alpha^2}{3s} \left(1 - \frac{m_\chi^2}{E^2}\right)^{3/2} \quad (45)$$

In the high-energy limit ($E \gg m_\chi$) we have

$$\frac{d\sigma(e^+e^- \rightarrow \chi^+\chi^-)}{d\Omega} \rightsquigarrow \frac{\alpha^2}{8s} \sin^2 \theta \quad (46)$$

$$\sigma(e^+e^- \rightarrow \chi^+\chi^-) \rightsquigarrow \frac{\pi\alpha^2}{3s} \quad (47)$$

The differential cross section for $e^+ + e^- \rightarrow \mu^+ + \mu^-$ is given by Eq.(7.48) in the lecture notes

$$\frac{d\sigma(e^+e^- \rightarrow \mu^+\mu^-)}{d\Omega} = \frac{\alpha^2}{4s} \sqrt{1 - \frac{m_\mu^2}{E^2}} \left[1 + \frac{m_\mu^2}{E^2} + \left(1 - \frac{m_\mu^2}{E^2}\right) \cos^2 \theta\right] \quad (48)$$

And the total cross section (Eq.(7.49))

$$\sigma(e^+e^- \rightarrow \mu^+\mu^-) = \frac{4\pi\alpha^2}{3s} \sqrt{1 - \frac{m_\mu^2}{E^2}} \left(1 + \frac{1}{2} \frac{m_\mu^2}{E^2}\right) \quad (49)$$

In the high-energy limit ($E \gg m_\mu$)

$$\frac{d\sigma(e^+e^- \rightarrow \mu^+\mu^-)}{d\Omega} \rightsquigarrow \frac{\alpha^2}{4s} (1 + \cos^2 \theta) \quad (50)$$

$$\sigma(e^+e^- \rightarrow \mu^+\mu^-) \rightsquigarrow \frac{4\pi\alpha^2}{3s} \quad (51)$$

Interestingly the total cross sections have the same dependence on α and only differ by a factor of four.

1.5 Anomalous magnetic moment contribution

Now assume that there is an electrically neutral χ^0 particles, described by a real scalar field ϕ , that interacts with electrons via a Yukawa interaction, given by

$$\mathcal{L}_Y = -\lambda\phi\bar{\psi}_e\psi_e \quad (52)$$

Where λ is a real constant and ψ_e is the electron field. Find the Feynman rule for the Yukawa interaction and calculate the effect of virtual χ^0 particles to the anomalous magnetic moment of the electron to one-loop accuracy.

Transforming to momentum space we have

$$-\lambda \int d^4x \phi(x) \bar{\psi}_e(x) \psi_e(x) \rightsquigarrow -\lambda \int d^4x \int \frac{d^4p}{(2\pi)^4} \frac{d^4p'}{(2\pi)^4} \frac{d^4k}{(2\pi)^4} \phi(k) \bar{\psi}_e(p') \psi_e(p) e^{-ix \cdot (p - p' + k)} \quad (53)$$

$$= \int \frac{d^4p}{(2\pi)^4} \frac{d^4p'}{(2\pi)^4} \frac{d^4k}{(2\pi)^4} \phi(k) \bar{\psi}_e(p') \psi_e(p) (-\lambda) (2\pi)^4 \delta^4(p + k - p') \quad (54)$$

Thus, we have a vertex factor of $-i\lambda(2\pi)^4 \delta^4(p + k - p')$ represented pictorially as the following Feynman diagram

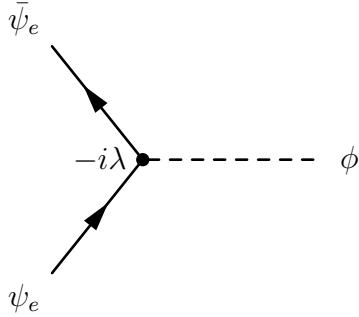
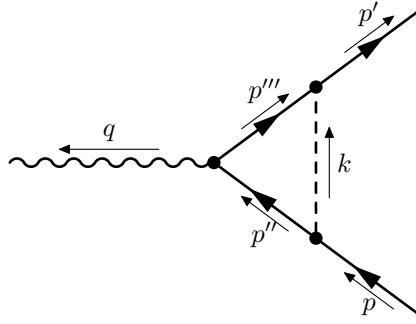


Figure 4: Neutral scalar vertex

The contribution to the anomalous magnetic moment can be calculated from analyzing the following Feynman diagram



Writing the one-loop matrix element and ignoring the external factors as in the notes

$$\begin{aligned}
 & -ie(2\pi)^4 \Gamma^\mu(p, p') \\
 &= \int d^4k d^4p'' d^4p''' (-i\lambda)(2\pi)^4 \frac{i}{(2\pi)^4} \frac{\not{p}''' + m}{(p''')^2 - m^2 + i\epsilon} (-ie)(2\pi)^4 \gamma^\mu \\
 & \times \frac{i}{(2\pi)^4} \frac{\not{p}'' + m}{(p'')^2 - m^2 + i\epsilon} (-i\lambda)(2\pi)^4 \frac{1}{(2\pi)^4} \frac{i}{k^2 - M^2 + i\epsilon} \\
 & \times \delta^4(p - k - p'') \delta^4(p''' + k - p')
 \end{aligned} \tag{55}$$

$$= \lambda^2 e \int d^4k \frac{\not{p}' - \not{k} + m}{(p' - k)^2 - m^2 + i\epsilon} \gamma^\mu \frac{\not{p} - \not{k} + m}{(p - k)^2 - m^2 + i\epsilon} \frac{1}{k^2 - M^2 + i\epsilon} \tag{56}$$

$$\Gamma^\mu = i\lambda^2 \int \frac{d^4k}{(2\pi)^4} \frac{(\not{p}' - \not{k} + m)\gamma^\mu(\not{p} - \not{k} + m)}{[(p' - k)^2 - m^2][(p - k)^2 - m^2][k^2 - M^2]} \tag{57}$$

Using the identity from problem set 8

$$\frac{1}{ABC} = 2 \int_0^1 \delta(x + y + z - 1) \frac{dxdydz}{[xA + yB + zC]^3} \tag{58}$$

Eq.(57) becomes

$$= 2 \int_0^1 dxdydz \delta^3(x + y + z - 1) \left[[(p' - k)^2 - m^2]x + [(p - k)^2 - m^2]y + [k^2 - M^2]z \right]^{-3} \tag{59}$$

$$= 2 \int_0^1 dxdydz \delta^3(x + y + z - 1) \left[k^2(x + y + z) - 2k \cdot (py + p'x) - m^2(x + y) - M^2z + p^2y + p'^2x \right]^{-3} \tag{60}$$

Completing the square

$$= 2 \int_0^1 dx dy dz \delta^3(x + y + z - 1) [(k - px - p'y))^2 - (px + p'y)^2 - M^2 z]^{-3} \quad (61)$$

Defining $k \rightarrow k + px + p'y$, $\Lambda \equiv (px + p'y)^2 + M^2 z$

$$= 2 \int_0^1 dx dy dz \delta^3(x + y + z - 1) [k^2 - \Lambda]^{-3} \quad (62)$$

The numerator is given by

$$\begin{aligned} & (\not{p}' - \not{k} + m) \gamma^\mu (\not{p} - \not{k} + m) \\ & \rightsquigarrow [\not{p}'(1 - y) - \not{p}x - \not{k} + m] \gamma^\mu [\not{p}(1 - x) - \not{p}'y - \not{k} + m] \end{aligned} \quad (63)$$

Because the denominator is even in k' we can use the fact that $k'^\mu k'^\nu = g^{\mu\nu} k'^2 / 4$ and drop terms odd in k' leaving us with

$$[\not{p}'(1 - y) - \not{p}x + m] \gamma^\mu [\not{p}(1 - x) - \not{p}'y + m] + \not{k}' \gamma^\mu \not{k}' \quad (64)$$

$$\begin{aligned} & = \frac{k^2}{4} \gamma_\lambda \gamma^\mu \gamma^\lambda + (1 - y)(1 - x) \not{p}' \gamma^\mu \not{p} - (1 - y)y \not{p}' \gamma^\mu \not{p}' + (1 - y)m \not{p}' \gamma^\mu \\ & \quad - (1 - x)x \not{p} \gamma^\mu \not{p} + xy \not{p} \gamma^\mu \not{p}' - xm \not{p} \gamma^\mu \\ & \quad + (1 - x)m \gamma^\mu \not{p} - ym \gamma^\mu \not{p}' + m^2 \gamma^\mu \end{aligned} \quad (65)$$

We can now use the Dirac equation and Clifford relation to simplify, using

$$\not{p} \gamma^\mu = 2p^\mu - \gamma^\mu \not{p}, \quad \not{p}u(p) = u(p)m, \quad \bar{u}(p')\not{p}' = \bar{u}(p')m, \quad q^2 = -2(p \cdot p') + 2m^2 \quad (66)$$

1.

$$\frac{k'^2}{4} \gamma_\lambda \gamma^\mu \gamma^\lambda = \frac{-k'^2}{2} \gamma^\mu \quad (67)$$

2.

$$(1 - y)(1 - x) \not{p}' \gamma^\mu \not{p} = (1 - x)(1 - y)m^2 \gamma^\mu \quad (68)$$

3.

$$(1 - y)y \not{p}' \gamma^\mu \not{p}' = (1 - y)y m \gamma^\mu \not{p}' = (1 - y)y m (2p'^\mu - \not{p}' \gamma^\mu) \quad (69)$$

$$= (1 - y)y m (2p'^\mu - m \gamma^\mu) \quad (70)$$

4.

$$(1 - y)m \not{p}' \gamma^\mu = (1 - y)m^2 \gamma^\mu \quad (71)$$

5.

$$(1-x)x\gamma^\mu\gamma^\mu\gamma^\mu = (1-x)xm(2p^\mu - \gamma^\mu\gamma^\mu) = (1-x)xm(2p^\mu - m\gamma^\mu) \quad (72)$$

6.

$$xy\gamma^\mu\gamma^\mu\gamma^\mu\gamma^\mu = xy(2p^\mu - \gamma^\mu\gamma^\mu)\gamma^\mu \quad (73)$$

$$= xym [2p^\mu - (2p'^\mu - \gamma^\mu\gamma^\mu)] = xym(2q^\mu + \gamma^\mu m) \quad (74)$$

7.

$$xm\gamma^\mu\gamma^\mu = xm(2p^\mu - \gamma^\mu m) \quad (75)$$

8.

$$(1-x)m\gamma^\mu\gamma^\mu = (1-x)m^2\gamma^\mu \quad (76)$$

9.

$$ym\gamma^\mu\gamma^\mu\gamma^\mu = ym(2p'^\mu - \gamma^\mu m) \quad (77)$$

10.

$$m^2\gamma^\mu \quad (78)$$

We are uninterested in terms which are proportional to γ^μ as they do not contribute to the magnetic moment. Thus, putting it all together and excluding those terms we have

$$\rightsquigarrow 2m(p^\mu(x-2)x + q^\mu xy + p'^\mu(y-2)y) \quad (79)$$

$$= 2m [p^\mu x^2 + q^\mu xy + p'^\mu y^2 - 2(p^\mu x + p'^\mu y)] \quad (80)$$

I can rewrite

$$2(p^\mu x^2 + p'^\mu y^2) = (p^\mu + p'^\mu)(x^2 + y^2) + q^\mu(x^2 - y^2) \quad (81)$$

$$2(p^\mu x + p'^\mu y) = (p^\mu + p'^\mu)(x + y) + q^\mu(x - y) \quad (82)$$

Giving,

$$= m [(p^\mu + p'^\mu)(x^2 + y^2) - 2(p^\mu + p'^\mu)(x + y) + q^\mu(x^2 - y^2) - 2q^\mu(x - y) + q^\mu xy] \quad (83)$$

$$= m [(p^\mu + p'^\mu)(x^2 + y^2 - 2x - 2y) + q^\mu(x^2 - y^2 - 2x + 2y + xy)] \quad (84)$$

$$= 2m [p'^\mu y(y - x - 2) + p^\mu x(y + x - 2)] \quad (85)$$

$$= m [(p^\mu + p'^\mu)(y(y - x - 2) + x(y + x - 2)) + q^\mu(y(y - x - 2) - x(y + x - 2))] \quad (86)$$

The only factors which contribute to the magnetic moment are proportional to $(p^\mu + p'^\mu)$ (because $F(0) = 1$). Now we use the Gordon identity

$$\bar{u}(\mathbf{p}')\gamma^\mu u(\mathbf{p}) = \bar{u}(\mathbf{p}') \left[\frac{p'^\mu + p^\mu}{2m} - \frac{i\sigma^{\mu\nu}q_\nu}{2m} \right] u(\mathbf{p}) \quad (87)$$

Where $\sigma^{\mu\nu} = \frac{i}{2}[\gamma^\mu, \gamma^\nu]$. We can ignore γ^μ factor receive the contribution of the numerator as

$$\frac{i\sigma^{\mu\nu}q_\nu}{2m} 2m^2(y(y-x-2) + x(y+x-2)) \quad (88)$$

Thus,

$$G(q^2) = 2i\lambda^2 m^2 \int_0^\infty \frac{dk}{(2\pi)^4} \int_0^1 dx dy dz \delta^3(x+y+z-1) \frac{k^3(y(y-x-2) + x(y+x-2))}{(k^2 - \Lambda)^3} \quad (89)$$

$$G(q^2) = -\frac{2\lambda^2 m}{4(2\pi)^2} \int_0^1 dx dy dz \delta^3(x+y+z-1) \frac{(y(y-x-2) + x(y+x-2))}{\Lambda} \quad (90)$$

Rewriting

$$\Lambda = (px+p'y)^2 + M^2 z = m^2(x^2+y^2) + 2xy(p \cdot p') + M^2 z = m^2(x^2+y^2) + xy(2m^2-q^2) + M^2 z \quad (91)$$

$$= m^2(x^2 + y^2 + 2xy) - xyq^2 + M^2 z \quad (92)$$

Leaving us with

$$G(q^2) = -\frac{2\lambda^2 m}{4(2\pi)^2} \int_0^1 dx dy dz \delta(x+y+z-1) \frac{(y(y-x-2) + x(y+x-2))}{m^2(x^2+y^2+2xy) - xyq^2 + M^2 z} \quad (93)$$

At $q^2 = 0$ we have then,

$$G(0) = -\frac{2\lambda^2 m}{4(2\pi)^2} \int_0^1 dx dy dz \delta(x+y+z-1) \frac{(y(y-x-2) + x(y+x-2))}{m^2(x^2+y^2+2xy) - xyq^2 + M^2 z} \quad (94)$$

Integrating over x invokes the delta-function ($x \rightarrow 1-y-z$).

$$= \frac{\lambda^2 m^2}{2(2\pi)^2} \int_0^1 dz \int_0^{1-z} dy \frac{1-z^2}{m^2(1-z)^2 + M^2 z} \quad (95)$$

$$= \frac{\lambda^2 m^2}{2(2\pi)^2} \int_0^1 dz \frac{(1-z^2)(1-z)}{m^2(1-z)^2 + M^2 z} \quad (96)$$

This integral can be evaluated in Mathematica assuming $M \gg m$, we end up with the neutral scalars contribution to the electrons magnetic moment as

$$G(0) \approx \frac{\lambda^2 m^2}{8\pi^2 M^2} \left[\ln\left(\frac{M^2}{m^2}\right) - \frac{7}{6} \right] \quad (97)$$