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1 SCALAR QED

1 Scalar QED

Consider the theory of a complex scalar field Φ, describing particles and antiparticles
χ− and χ+ of electric charge ∓e, respectively, interacting with the electromagnetic
field Aµ. The Lagrangian density is given by

L = −1

4
FµνF

µν + (DµΦ)
∗DµΦ−M2Φ∗Φ (1)

Where Dµ ≡ ∂µ + ieAµ.

1.1 Propagator

The free propagator is defined by

i∆(x− y) ≡ ⟨0|T{Φ(x)Φ∗(y)}|0⟩
= ⟨0|Φ(x)Φ∗(y)|0⟩Θ(x0 − y0) + ⟨0|Φ∗(y)Φ(x)|0⟩Θ(y0 − x0)

(2)

A free real scalar field can be described by the following operator acting on Fock
space

ϕ(x) =

∫
d3p

(2π)3/2
√

2p0

[
a(p)e−ip·x + ac†(p)eip·x

]
(3)

With the creation and annihilation operators obeying (anti-)commutation rela-
tions

[a(p), a†(p′)]∓ = δ3(p− p′), [a(p), a(p′)]∓ = [a†(p), a†(p′)]∓ = 0 (4)

A complex scalar field can be described by two independent real scalar fields

Φ(x) =
1√
2
(ϕ1(x) + iϕ2(x))

=

∫
d3p

(2π)3/2
√

2p0

[
a(p)e−ip·x + b†(p)eip·x

] (5)

Φ∗(x) =

∫
d3p

(2π)3/2
√
2p0

[
a†(p)eip·x + b(p)e−ip·x] (6)

Where the a(p) operators create and annihilate single scalar particle states with
positive charge (Q̂ = +1) and the b(p) operators create and annihilate single scalar
particle states with negative charge (Q̂ = −1). This can be seen by computing the
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1 SCALAR QED 1.1 Propagator

conserved current jµ = iΦ† ⇋
∂µ Φ. Where

⇋
∂µ denotes differentiation to the right with

a plus sign and to the left with a minus sign. The charge operator Q̂ is then given
by

Q̂ =

∫
d3xj0 =

∫
d3p

(2π)32p0
[
a†(p)a(p)− b†(p)b(p)

]
(7)

From the commutations relations of a real scalar field Eq.(4) we have that

[a(p), a†(p′)]∓ = δ3(p− p′)

[b(p), b†(p′)]∓ = δ3(p− p′)
(8)

Evaluating the propagator explicitly we see

i∆(x− y) =

∫
d3p

(2π)3/2
√

2p0
d3q

(2π)3/2
√
2q0

×
[
Θ(x0 − y0) ⟨0|

(
a(p)e−ip·x + b†(p)eip·x

) (
a†(q)eip·y + b(q)e−iq·y) |0⟩

+Θ(y0 − x0) ⟨0|
(
a†(q)eiq·y + b(q)e−iq·y) (a(p)e−ip·x + b†(p)eip·x

)
|0⟩

]
(9)

=

∫
d3p

(2π)3/2
√

2p0
d3q

(2π)3/2
√
2q0

[
Θ(x0 − y0)e

i(q·y−p·x) ⟨0|a(p)a†(q)|0⟩

+Θ(y0 − x0)e
i(p·x−q·y) ⟨0|b(p)b†(q)|0⟩

] (10)

=

∫
d3p

(2π)3/2
√

2p0
d3q

(2π)3/2
√

2q0
δ3(p− q)

[
Θ(x0 − y0)e

i(q·y−p·x) +Θ(y0 − x0)e
i(p·x−q·y)

]
(11)

=

∫
d3p

(2π)32p0
[
Θ(x0 − y0)e

−ip·(x−y) +Θ(y0 − x0)e
ip·(x−y)

]
(12)

Using the Fourier representation of the Heaviside-step function

Θ(t) =
−1

2πi

∫ ∞

−∞
ds

exp(−ist)
s+ iϵ

(13)

and evaluating 12 gives

=

∫
d4p

[
1

(2π)4
i

p2 −M2 + iϵ

]
eip·(x−y). (14)
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1 SCALAR QED 1.2 External legs

1.2 External legs

We note that the creation and annihilation operators can be written in the following
form which may prove useful

b†(p) =

∫
d3x

(2π)3/2
√

2p0
Φ(x)i

⇋
∂t e

−ip·x

=

∫
d3q

(2π)3
√

2q0
√

2p0

∫
d3x

{[
a(q)e−iq·x + b†(q)eiq·x

]
i
⇋
∂t e

−ip·x
}

=

∫
d3q

(2π)3
√

2q0
√

2p0

∫
d3x

{
(p0 + q0)ei(q−p)·xa†(q) + (p0 − q0)e−i(p+q)·xa(q)

}
(15)

Using ∫
d3xei(q−p)·x = (2π)3δ3(p− q) (16)

And then integrating over the delta-function

=
1

(2π)32p0
(2π)32p0b†(p) = b†(p) (17)

Similarly,

a†(p) =

∫
d3x

(2π)3/2
√

2p0
Φ∗(x)i

⇋
∂t e

−ip·x (18)

These don’t seem to be of any help here but, the explicit form is still interesting and
could be useful.

The external legs contain contractions of the form

⟨0|Φ(x)b†(k) |0⟩ = |0⟩
∫

d3p

(2π)3/2
√
2p0

[
a(p)e−ip·x + b†(p)eip·x

]
b†(k) + · · · |0⟩

=

[
1

(2π)3/2
√
2p0

]∫
d3peip·xδ4(p− k) ⟨0| · · · |0⟩

=

[
1

(2π)3/2
√
2p0

]
eik·x ⟨0| · · · |0⟩

(19)

Where I have used the derived scalar commutation given in Eq.(8). All other external
legs will follow the same general calculation, always leaving a factor of 1/(2π)3/2

√
2p0

as the coefficient.
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1 SCALAR QED 1.3 Feynman Rules

1.3 Feynman Rules

The above external states are contracted with other fields when we evaluate the
time-ordered product, we obtain factors of the form

⟨0| a (20)

All of the information about interactions between the scalar particles and photons is
held in the covariant derivative term in the Lagrangian density

(DµΦ(x))
∗DµΦ(x) = (∂µΦ

∗(x)− ieAµ(y)Φ
∗(x))(∂µΦ(x) + ieAµ(x)Φ(x)) (21)

= ∂µΦ
∗(x)∂µΦ(x)+ieAµ(x)Φ(x)∂µΦ

∗(x)−ieAµ(x)Φ
∗(x)∂µΦ(x)+e2Aµ(x)A

µ(x)|Φ(x)|2

The first term is just the free kinetic term for the complex scalar field. Fourier
transforming to momentum space and focusing on the second and third term

ie

∫
d4x [Aµ(x)Φ(x)∂

µΦ∗(x)− Aµ(x)Φ
∗(x)∂µΦ(x)]

⇝ i2e

∫
d4x

∫
d4k

(2π)4
d4p

(2π)4
d4p′

(2π4)

[
−Aµ(k)Φ(p)p

µ′Φ∗(p′) + Aµ(k)Φ
∗(p′)pµΦ(p)

]
e−ix·(p+k−p′)

=

∫
d4k

(2π)4
d4p

(2π)4
d4p′

(2π)4
Aµ(k)Φ

∗(p′)Φ(p)e(p′ − p)µ(2π)4δ4(p− p′ + k) (22)

The Feynman rules are obtained from the time ordered products of fields from a
perturbation expansion of eiLint . Thus, we see that the above term corresponds to the
vertex ie(p′ − p)µ with external lines corresponding to Φ,Φ∗, and Aµ with an overall
energy-momentum conserving delta-function (2π)4δ4(p+ p′ − k). Pictorially this is
represented as

p

p′

p+ p′

Φ

Φ∗

Aµie(p′ − p)µ

Figure 1: Scalar QED vertex
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1 SCALAR QED 1.4 e+e− → χ+χ− scattering

For the final term in Eq.(21) we have

e2
∫
d4x

[
gµνA

ν(x)Aµ(x)|Φ(x)|2
]

⇝
∫
d4x

∫
d4k

(2π)4
d4k′

(2π)4
d4p

(2π)4
d4p′

(2π)4

[
e2gµνA

ν(k)Aµ(k′)Φ(p)Φ∗(p′)e−ix·(p+p′−k−k′)
]

(23)

=

∫
d4k

(2π)4
d4k′

(2π)4
d4p

(2π)4
d4p′

(2π)4
[
Aν(k)Aµ(k′)Φ(p)Φ∗(p′)e2gµν(2π)

4δ4(p+ p′ − k − k′)
]

(24)
Including a factor of i from the expansion of eiLint we have a four-particle interaction
vertex of with a vertex factor 2ie2(2π)4δ4(p+ p′ − k). The factor of 2 comes from the
necessary symmetry factor which accounts for the total number of Aµ contractions
which result in the same amplitude. Pictorially this vertex is represented as

Φ

Φ∗

Aµ

Aν

Figure 2: Scalar QED vertex

1.4 e+e− → χ+χ− scattering

The lowest order tree-level for e+e− → χ+χ− is given by

p1

p2

q

p4

p3
−igµν
q2

e−

e+

χ+

χ−

ieγµ ie(p4 − p3)
ν
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1 SCALAR QED 1.4 e+e− → χ+χ− scattering

Figure 3: s-channel Feynman diagram

Our Feynman rules give the transition amplitude:

−2πiδ4(p1 + p2 − p3 − p4)M =∫
d4q

(2π)4

[
v̄(p2, σ2)

(2π)3/2
ieγµ

u(p1, σ1)

(2π)3/2
1

(2π)4
−igµν
q2

ie(p4 − p3)
ν 1

(2π)3/2
√
2p03

1

(2π)3/2
√

2p04

]
× (2π)4δ4(p1 + p2 − q)(2π)4δ4(q − p3 − p4)

=
ie2

2(2π)2
√
p03p

0
4

[
v̄2

/p4 − /p3
(p1 + p2)2

u1

]
δ4(p1 + p2 − p3 − p4) (25)

Leaving us with our matrix element

M =
−e2

2(2π)3
√
p03p

0
4

[
v̄2

/p4 − /p3
(p1 + p2)2

u1

]
(26)

The squared matrix element is then given by

|M|2 = e4

4(2π)6p03p
0
4

[
v̄2

/p4 − /p3
(p1 + p2)2

u1

] [
v̄2

/p4 − /p3
(p1 + p2)2

u1

]∗
(27)

=
e4

4(2π)6p03p
0
4

[
v̄2

/p4 − /p3
(p1 + p2)2

u1

] [
ū1

/p4 − /p3
(p1 + p2)2

v2

]
(28)

Now we want to average over the initial helicites

⟨|M|2⟩ = e4

4(2π)6p03p
0
4

1

4

∑
σ1,σ2

[
v̄2

/p4 − /p3
(p1 + p2)2

u1

] [
ū1

/p4 − /p3
(p1 + p2)2

v2

]
(29)

Using our completeness relation for spinors Eq.(5.7) in the lecture notes

=
e4

32(2π)6p01p
0
3p

0
4

∑
i,j

[
/p4 − /p3

(p1 + p2)2
(/p1 +me)

/p4 − /p3
(p1 + p2)2

]
ij

∑
σ2

[v2v̄2]ji (30)

=
e4

64(2π)6p01p
0
2p

0
3p

0
4

1

(p1 + p2)4
Tr[(/p4 − /p3)(/p1 +me)(/p4 − /p3)(/p2 −me)] (31)
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1 SCALAR QED 1.4 e+e− → χ+χ− scattering

Ignoring the electron mass we are left with

=
e4

64(2π)6p01p
0
2p

0
3p

0
4

1

(p1 + p2)4
Tr[(/p4 − /p3)/p1(/p4 − /p3)/p2] (32)

=
e4

16(2π)6p01p
0
2p

0
3p

0
4

1

(p1 + p2)4

[
2 (p2 · p3 − p2 · p4) (p1 · p3 − p1 · p4)− (p1 · p2)(p3 − p4)

2

]
(33)

In the center of mass frame p1 = −p2 ≡ p, p1+p2 = (2Ep, 0) thus, p3+p4 = (2Ep,p).
Definine Ep ≡ E and assuming E ≫ me i.e. |p| ≈ E

p1 = (E,p), p2 = (E,−p) (34)

p3 = (E ′,p′), p4 = (E ′,−p′) (35)

Thus,

(p2 · p3) = (p1 · p4) = E2 + p · p′ = E2 + |p||p′| cos θ ≈ E(E + |p′| cos θ) (36)

(p1 · p3) = (p2 · p4) = E2 − p · p′ = E2 − |p||p′| cos θ ≈ E(E − |p′| cos θ) (37)

(p1 · p2) = E2 + |p|2 ≈ 2E2 (38)

(p3 · p4) = E2 + |p′|2 (39)

Substituting these expressions into Eq.(33) gives

=
e4

2(2π)6E4

1

16E2

[
E2|p′|2(1− cos2 θ)

]
(40)

⟨|M|2⟩ = e4|p′|2

32(2π)6E6
sin2 θ (41)

From Eq.(2.55) in the lecture notes the differential cross section is given by

dσ

dΩ
=

(2π)4|p′|E1E2E3E4

(E1 + E2)2|p|
⟨|M|2⟩ = (2π)4|p′|E4

4
⟨|M|2⟩ = e4|p′|3

128(2π)2E5
sin2 θ (42)

Defining s ≡ (2E)2 and α = e2/(4π)

dσ(e+e− → χ+χ−)

dΩ
=
α2

8s

(E2 −m2
χ)

3/2

E3
sin2 θ =

α2

8s

(
1−

m2
χ

E2

)3/2

sin2 θ (43)
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1 SCALAR QED 1.4 e+e− → χ+χ− scattering

The total cross section is given by

σ(e+e− → χ+χ−) =
2πα2

8s

(
1−

m2
χ

E2

)3/2 ∫ 1

−1

(1− cos2 θ)d cos θ (44)

=
πα2

3s

(
1−

m2
χ

E2

)3/2

(45)

In the high-energy limit (E ≫ mχ) we have

dσ(e+e− → χ+χ−)

dΩ
⇝

α2

8s
sin2 θ (46)

σ(e+e− → χ+χ−)⇝
πα2

3s
(47)

The differential cross section for e+ + e− → µ+ + µ− is given by Eq.(7.48) in the
lecture notes

dσ(e+e− → µ+µ−)

dΩ
=
α2

4s

√
1−

m2
µ

E2

[
1 +

m2
µ

E2
+

(
1−

m2
µ

E2

)
cos2 θ

]
(48)

And the total cross section (Eq.(7.49))

σ(e+e− → µ+µ−) =
4πα2

3s

√
1−

m2
µ

E2

(
1 +

1

2

m2
µ

E2

)
(49)

In the high-energy limit (E ≫ mµ)

dσ(e+e− → µ+µ−)

dΩ
⇝

α2

4s
(1 + cos2 θ) (50)

σ(e+e− → µ+µ−)⇝
4πα2

3s
(51)

Interestingly the total cross sections have the same dependence on α and only differ
by a factor of four.

8



1 SCALAR QED 1.5 Anomalous magnetic moment contribution

1.5 Anomalous magnetic moment contribution

Now assume that there is an electrically neutral χ0 particles, described by a real
scalar field ϕ, that interacts with electrons via a Yukawa interaction, given by

LY = −λϕψ̄eψe (52)

Where λ is a real constant and ψe is the electron field. Find the Feynman rule for the
Yukawa interaction and calculate the effect of virtual χ0 particles to the anomalous
magnetic moment of the electron to one-loop accuracy.

Transforming to momentum space we have

−λ
∫
d4xϕ(x)ψ̄e(x)ψe(x)⇝ −λ

∫
d4x

∫
d4p

(2π)4
d4p′

(2π)4
d4k

(2π)4
ϕ(k)ψ̄e(p

′)ψe(p)e
−ix·(p−p′+k)

(53)

=

∫
d4p

(2π)4
d4p′

(2π)4
d4k

(2π)4
ϕ(k)ψ̄e(p

′)ψe(p)(−λ)(2π)4δ4(p+ k − p′) (54)

Thus, we have a vertex factor of −iλ(2π)4δ4(p+ k− p′) represented pictorially as the
following Feynman diagram

ψe

ψ̄e

ϕ−iλ

Figure 4: Neutral scalar vertex

The contribution to the anomalous magnetic moment can be calculated from analyzing
the following Feynman diagram
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1 SCALAR QED 1.5 Anomalous magnetic moment contribution

p

p′′′

q

p′′

k

p′

Writing the one-loop matrix element and ignoring the external factors as in the
notes

−ie(2π)4Γµ(p, p′)

=

∫
d4kd4p′′d4p′′′(−iλ)(2π)4 i

(2π)4
/p′′′ +m

(p′′′)2 −m2 + iϵ
(−ie)(2π)4γµ

× i

(2π)4
/p′′ +m

(p′)2 −m2 + iϵ
(−iλ)(2π)4 1

(2π)4
i

k2 −M2 + iϵ

× δ4(p− k − p′′)δ4(p′′′ + k − p′)

(55)

= λ2e

∫
d4k

/p′ − /k +m

(p′ − k)2 −m2 + iϵ
γµ

/p− /k +m

(p− k)2 −m2 + iϵ

1

k2 −M2 + iϵ
(56)

Γµ = iλ2
∫

d4k

(2π)4
(/p′ − /k +m)γµ(/p− /k +m)

[(p′ − k)2 −m2][(p− k)2 −m2][k2 −M2]
(57)

Using the identity from problem set 8

1

ABC
= 2

∫ 1

0

δ(x+ y + z − 1)
dxdydz

[xA+ yB + zC]3
(58)

Eq.(57) becomes

= 2

∫ 1

0

dxdydzδ3(x+y+z−1)
[
[(p′ − k)2 −m2]x+ [(p− k)2 −m2]y + [k2 −M2]z

]−3

(59)

= 2

∫ 1

0

dxdydzδ3(x+y+z−1)
[
k2(x+ y + z)− 2k · (py + p′x)−m2(x+ y)−M2z + p2y + p′2x

]−3

(60)
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1 SCALAR QED 1.5 Anomalous magnetic moment contribution

Completing the square

= 2

∫ 1

0

dxdydzδ3(x+ y + z − 1)
[
(k − px− p′y))2 − (px+ p′y)2 −M2z

]−3
(61)

Defining k → k + px+ p′y, Λ ≡ (px+ p′y)2 +M2z

= 2

∫ 1

0

dxdydzδ3(x+ y + z − 1)
[
k2 − Λ

]−3
(62)

The numerator is given by

(/p
′ − /k +m)γµ(/p− /k +m)

⇝
[
/p
′(1− y)− /px− /k +m

]
γµ

[
/p(1− x)− /p

′y − /k +m
] (63)

Because the denominator is even in k′ we can use the fact that k′µk′ν = gµνk′2/4 and
drop terms odd in k′ leaving us with[

/p
′(1− y)− /px+m

]
γµ

[
/p(1− x)− /p

′y +m
]
+ /k

′
γµ/k

′
(64)

=
k2

4
γλγ

µγλ + (1− y)(1− x)/p
′γµ/p− (1− y)y/p

′γµ/p
′ + (1− y)m/p

′γµ

− (1− x)x/pγ
µ
/p+ xy/pγ

µ
/p
′ − xm/pγ

µ

+ (1− x)mγµ/p− ymγµ/p
′ +m2γµ

(65)

We can now use the Dirac equation and Clifford relation to simplify, using

/pγ
µ = 2pµ−γµ/p, /pu(p) = u(p)m, ū(p′)/p

′ = ū(p′)m, q2 = −2(p·p′)+2m2 (66)

1.
k′2

4
γλγ

µγλ =
−k′2

2
γµ (67)

2.
(1− y)(1− x)/p

′γµ/p = (1− x)(1− y)m2γµ (68)

3.
(1− y)y/p

′γµ/p
′ = (1− y)ymγµ/p

′ = (1− y)ym(2p′µ − /p
′γµ) (69)

= (1− y)ym(2p′µ −mγµ) (70)

4.
(1− y)m/p

′γµ = (1− y)m2γµ (71)
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1 SCALAR QED 1.5 Anomalous magnetic moment contribution

5.
(1− x)x/pγ

µ
/p = (1− x)xm(2pµ − γµ/p) = (1− x)xm(2pµ −mγµ) (72)

6.
xy/pγ

µ
/p
′ = xy(2pµ − γµ/p)/p

′ (73)

= xym
[
2pµ − (2p′µ − /p

′γµ)
]
= xym(2qµ + γµm) (74)

7.
xm/pγ

µ = xm(2pµ − γµm) (75)

8.
(1− x)mγµ/p = (1− x)m2γµ (76)

9.
ymγµ/p

′ = ym(2p′µ − γµm) (77)

10.
m2γµ (78)

We are uninterested in terms which are proportional to γµ as they do not contribute
to the magnetic moment. Thus, putting it all together and excluding those terms we
have

⇝ 2m(pµ(x− 2)x+ qµxy + p′µ(y − 2)y) (79)

= 2m
[
pµx2 + qµxy + p′µy2 − 2(pµx+ p′µy)

]
(80)

I can rewrite

2(pµx2 + p′µy2) = (pµ + p′µ)(x2 + y2) + qµ(x2 − y2) (81)

2(pµx+ p′µy) = (pµ + p′µ)(x+ y) + qµ(x− y) (82)

Giving,

= m
[
(pµ + p′µ)(x2 + y2)− 2(pµ + p′µ)(x+ y) + qµ(x2 − y2)− 2qµ(x− y) + qµxy

]
(83)

= m
[
(pµ + p′µ)(x2 + y2 − 2x− 2y) + qµ(x2 − y2 − 2x+ 2y + xy)

]
(84)

= 2m [p′µy(y − x− 2) + pµx(y + x− 2)] (85)

= m [(pµ + p′µ)(y(y − x− 2) + x(y + x− 2)) + qµ(y(y − x− 2)− x(y + x− 2))]
(86)
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1 SCALAR QED 1.5 Anomalous magnetic moment contribution

The only factors which contribute to the magnetic moment are proportional to
(pµ + p′µ)(because F (0) = 1). Now we use the Gordon identity

ū(p′)γµu(p) = ū(p′)

[
p′µ + pµ

2m
− iσµνqν

2m

]
u(p) (87)

Where σµν = i
2
[γµ, γν ]. We can ignore γµ factor receive the contribution of the

numerator as
iσµνqν
2m

2m2(y(y − x− 2) + x(y + x− 2)) (88)

Thus,

G(q2) = 2iλ2m2

∫ ∞

0

dk

(2π)4

∫ 1

0

dxdydzδ3(x+y+z−1)
k3(y(y − x− 2) + x(y + x− 2))

(k2 − Λ)3

(89)

G(q2) = − 2λ2m

4(2π)2

∫ 1

0

dxdydzδ3(x+ y + z − 1)
(y(y − x− 2) + x(y + x− 2))

Λ
(90)

Rewriting

Λ = (px+p′y)2+M2z = m2(x2+y2)+2xy(p·p′)+M2z = m2(x2+y2)+xy(2m2−q2)+M2z
(91)

= m2(x2 + y2 + 2xy)− xyq2 +M2z (92)

Leaving us with

G(q2) = − 2λ2m

4(2π)2

∫ 1

0

dxdydzδ(x+ y+ z− 1)
(y(y − x− 2) + x(y + x− 2))

m2(x2 + y2 + 2xy)− xyq2 +M2z
(93)

At q2 = 0 we have then,

G(0) = − 2λ2m

4(2π)2

∫ 1

0

dxdydzδ(x+ y + z − 1)
(y(y − x− 2) + x(y + x− 2))

m2(x2 + y2 + 2xy)− xyq2 +M2z
(94)

Integrating over x invokes the delta-function (x→ 1− y − z).

=
λ2m2

2(2π)2

∫ 1

0

dz

∫ 1−z

0

dy
1− z2

m2(1− z)2 +M2z
(95)

=
λ2m2

2(2π)2

∫ 1

0

dz
(1− z2)(1− z)

m2(1− z)2 +M2z
(96)

This integral can be evaluated in Mathematica assuming M ≫ m, we end up with
the neutral scalars contribution to the electrons magnetic moment as

G(0) ≈ λ2m2

8π2M2

[
ln

(
M2

m2

)
− 7

6

]
(97)
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