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1 SCALAR QED

1 Scalar QED

Consider the theory of a complex scalar field ®, describing particles and antiparticles
x~ and xT of electric charge Fe, respectively, interacting with the electromagnetic
field A*. The Lagrangian density is given by

1 v * *
L=~ FuF" +(D,®) D'd — M*®"% (1)

Where D, = 0, + ieA,.

1.1 Propagator
The free propagator is defined by

iA(x = y) = (0[T{®(z)®"(y)}]0)

— (0] ()" (4)10) ©(z0 — 10) + (01" (1) (2)10) Oy — z0) )

A free real scalar field can be described by the following operator acting on Fock
space

) = d3—p a e_ip'$ aCT 6ip~a:
o) = [ G P )] ®)

With the creation and annihilation operators obeying (anti-)commutation rela-
tions

la(p),a'(P)]z = (P~ ), la(p).a(@)]z = [(p),d' @)z =0 (4
A complex scalar field can be described by two independent real scalar fields

1

f P [ape T+ () ’
— — >  Tla e 'Lp-x+ et
o P P

3/2\/2_p0

d’p A .
¢ (z :/— ane”"x—kbpe—w“ 6
)= | G W@+ olp)e ) )
Where the a(p) operators create and annihilate single scalar particle states with
positive charge () = +1) and the b(p) operators create and annihilate single scalar

A

particle states with negative charge () = —1). This can be seen by computing the

®(x) (¢1(2) + ida(z))
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conserved current j* = ;®f O ®. Where 0% denotes differentiation to the right with

a plus sign and to the left with a minus sign. The charge operator () is then given
by

d3
3 _ t —pt
Q=[x = [ b ol m)ate) = (p)b(e)] (7
From the commutations relations of a real scalar field Eq.(4) we have that

a(p),a’(p')]z = 6°(p — p)
[b(p), b (p')]+ = 6°(p — P)

—

Evaluating the propagator explicitly we see
d? d?

iAz —y) = / ¢ -

2m)2 /2 202\ 2

X [G(xo —10) (0] (a(p)e™* + b'(p)e™*) (a'(@)e™? + b(q)e ™) |0)

4 O(yo — 20) (0] (! (@)™ + b(@)e=") (alp)e=* + bl (p)e) ro>]

9
/ d?’P\/ d3q1 /240 {9(90 Yo)e "7 (0]a(p)a’ (q)|0) !
= 0~ Y
3/2 0 3/2 0
+6(00 — a)e = O (a)0) |
d3p d?’q i(q-y—p-x i(p-x—q-
N / (2m)%/2/2p0 (21)3/2 /240 =) {@m ~ W)t 4 Bl —a0)e’ qy)]
y (1)
p Z Xr— 7 r—
= /W [O(0 — yo)e ) + O(yo — wo)e” V] (12)
Using the Fourier representation of the Heaviside-step function
—1 [ exp(—ist)
o(t) = — ds———— 13
(®) 2m1 /oo ° s+ i€ (13)

and evaluating 12 gives

1 ; |
— [ ip(z—y) 14
/ p[<2w>4p2—M2+iJ€ 19
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1.2 External legs

We note that the creation and annihilation operators can be written in the following
form which may prove useful

d3x
Frny
0= [ i
_ / d’q p
(27)°/2¢°/2p°
d3q 3X 0 0 ei(q_p)'IaT 0o 0 e—i(p—i-q)-xa
| Garar ] PO R 6 = e )

O(z)i ) e 7"

3x { [a(q)e_iq'x + bT(q)eiq'””] 1 5,5 e_ip'x}

(15)
Using
[ et re = npsp - (16)
And then integrating over the delta-function
1
= ———(2m)*2p°b1 (p) = b 17
(27)32]90( m)"2p"b' (p) = b'(p) (17)
Similarly,
d®x =
t _ * : —ip-x
a = [ —————P*(x)i 0, e 18
v - | e @i (18)

These don’t seem to be of any help here but, the explicit form is still interesting and
could be useful.

The external legs contain contractions of the form

(0] @(z)b'(k) [0) = |0) / % [a(p)e=#* + bl (p)e™*] b1 (k) + --- [0)
- |G| [ e 0 (19)
: 1 : ik-x
"l Y

Where I have used the derived scalar commutation given in Eq.(8). All other external
legs will follow the same general calculation, always leaving a factor of 1/(27)3/2,/2p"
as the coefficient.



1 SCALAR QED 1.3 Feynman Rules

1.3 Feynman Rules

The above external states are contracted with other fields when we evaluate the
time-ordered product, we obtain factors of the form

(Ol a (20)

All of the information about interactions between the scalar particles and photons is
held in the covariant derivative term in the Lagrangian density

(Dp®(x))" DH®(x) = (9,P" () — ieAu(y) " (2))(0"P(2) + ieA(2)®(z))  (21)
= 0,9*(2)0"®(x)+ic A" (2)®(2), 0" (v)—ieA, (x)D* (2)0"P(z)+e* A, (z) A (z)|®(z) [?

The first term is just the free kinetic term for the complex scalar field. Fourier
transforming to momentum space and focusing on the second and third term

ie/d4x (A, (2)D(2)0" " (x) — A, ()P (2)0" P(x)]

4 d4]€ d4p d4 ! T, *( I\, [ —iz-(p+k—p’)
wi2e [ d'z 1y A2 @R (W) + Au(R) P ()P 2(p)] ¢

dk  d'p dYy e ke i ,
= / (2r) (27)" (%)MM(’C)@ )2 (pe(p’ —p)*(2m)'d " (p—p' + k)  (22)

The Feynman rules are obtained from the time ordered products of fields from a
perturbation expansion of e**i»:. Thus, we see that the above term corresponds to the
vertex te(p’ — p)* with external lines corresponding to ®, ®*, and A, with an overall
energy-momentum conserving delta-function (27)%%(p + p’ — k). Pictorially this is
represented as

Figure 1: Scalar QED vertex
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For the final term in Eq.(21) we have
62/d4x (g, A" (2) AF(2)|@(2)]?]

d*k d4k‘/ dp d*p ' w0 I\ —iz(ptp —k—
w/d“ / ]; @) |20 A” () A (K )@ (p) @ (pf e ==K

(23)
Ak A dp AW s i L /
B / (2m)* (2m)* (2m)* (2m)* [A¥ (k) AP (K" ® (p) ®* (1 )€ g, (27) 6 (p + 9/ — k — k‘(i)

Including a factor of i from the expansion of e’ we have a four-particle interaction
vertex of with a vertex factor 2ie?(2m)*6*(p + p’ — k). The factor of 2 comes from the
necessary symmetry factor which accounts for the total number of A, contractions
which result in the same amplitude. Pictorially this vertex is represented as

o+ A,

o A,

Figure 2: Scalar QED vertex

1.4 efe  — yTx scattering

The lowest order tree-level for ete™ — xTx ™ is given by
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Figure 3: s-channel Feynman diagram

Our Feynman rules give the transition amplitude:
—2mi6* (p1 + p2 — ps — pa) M =

/d4q 6(p2’02)i€’YNU(pl,al) 1 Zg,uu.<p4_p3) 1 1
20t | 2rp2 Y 2np @r)t @ (27972 208 (27)7° /200

x (2m)*0" (p1 + p2 — @) (27)*0" (¢ — ps — pa)
_ ie® {Uz Py = Ps
2(2m)2/p3pY L " (p1 + p2)?

Leaving us with our matrix element

o —e? ¥y p4 p3
M= 2(2m)3/p3p} [ 2 (pr + p2)? 1} (26)

The squared matrix element is then given by

IM|? = ¢ [UQ(%‘_’% ul] {v PPy ul] (27)

ul] §*(p1 + p2 — p3 — Pa) (25)

4(2W)6pgpg p1+ p2)2 (p1 + p2)
G S T o P
~ 4(2m)°ppd { *(p1 + )’ 1] { Y1+ po)? 2] (28)

Now we want to average over the initial helicites

M) = Tt & [P [P

01,02
Using our completeness relation for spinors Eq.(5.7) in the lecture notes
Py — Py ] -
= VoUs | s 30
Z{pﬁpﬂpl )(p1+pz)2 I 30

P p3p4 iJ oy

2Y)

- LT, — g, + m, — Py —m)] (3D

64(277) P1DoP3Py (Pl + p2)4
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Ignoring the electron mass we are left with

et 1

- )4Tr[(;¢4 _pS)pl(p4 _p:s)%z] (32)

64(27)5pdpdpipe (p1 + p2

et 1
= 2 (Do« D2 — Do - N Y
160 0Pt (pr & pa)i |2 P2 P8 P2 P) (1 s = pa-pa) = (P p2) (s (p4))
33

In the center of mass frame p; = —p2 = p, p1+p2 = (2E}, 0) thus, ps+ps = (2E,, p).
Definine E, = E and assuming F > m, i.e. |p| ~ E

D1 = (E7p>a D2 = (E7 _p) (34)
D3 = (E,7 p/)a Pa = (E/7 _p,) (35)

Thus,
(p2-p3) = (p1-ps) = E*+p-p = E*+ |p||p'|cosf ~ E(E + |p'|cosf)  (36)
(p1-p3) = (p2-ps) =E*—p-p' = E* — |p||p/|cos§ =~ E(E — |p'|cos§)  (37)
(p1-p2) = E* + |p|* =~ 2E° (38)

(ps - pa) = E* + [p'[* (39)
Substituting these expressions into Eq.(33) gives

el 1
_ E2p'12(1 — cos2 @ 40
2(2r ) E* 162 [p(1 = cos™0) (40)
411/12
2 e'p'| .2

= 0 41
<|M| > 32(27T)6E6 Sin ( )

From Eq.(2.55) in the lecture notes the differential cross section is given by

do _ 2m)'|p'|E\EREsEy o (20)Y P EY s )
dQ CETAI G g MO = g sl (42)

Defining s = (2F)? and o = €*/(4n)

do(ete” = xTx") o (B> =m})** 042( mi)m 24
= — S11n

d§ 8s E3 8s (43)
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The total cross section is given by

+om by 2w my v 2
oleTe” > x"x ) = 1—— (1 — cos®0)dcost (44)
8s E 1
S (1 - E_> (45)

In the high-energy limit (£ > m, ) we have

do(ete” = xTx™) o

R 1 2
e ~ g5 Sin 6 (46)
T’
olete” = xTx7) ~ E7Y (47)

The differential cross section for e™ + e~ — p™ + = is given by Eq.(7.48) in the
lecture notes

do(e*e” = pp~) o my [ ™M L\

And the total cross section (Eq.(7.49))

_ _ 4ma’ m? 1m?

olete” = utu™) = » 1-— E—g (1 + §E_g> (49)
In the high-energy limit (E > m,,)
do(ete™ = utp™) o N
—(1
70 ~ 45( + cos” ) (50)
4 2

o(ete” = ptum) - = (51)

3s

Interestingly the total cross sections have the same dependence on o and only differ
by a factor of four.
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1.5 Anomalous magnetic moment contribution

Now assume that there is an electrically neutral x° particles, described by a real
scalar field ¢, that interacts with electrons via a Yukawa interaction, given by

Y — _/\(m/_}ewe (52)

Where A is a real constant and v, is the electron field. Find the Feynman rule for the
Yukawa interaction and calculate the effect of virtual x° particles to the anomalous
magnetic moment of the electron to one-loop accuracy.

Transforming to momentum space we have

d4pl d'k T, —iz-(p—p'+k)
—A / d* 2 (2) e (2) e () ~> —A / d'z / T2 1 O(k)Ye(p)Ve(p)e *

S(k)e(p)e(p) (=) (2m) 0" (p + k — p') (54)

:/ dip dYy'  d*k
(2m)* (2m)* (2m)*

Thus, we have a vertex factor of —i\(27)%6%(p + k — p') represented pictorially as the
following Feynman diagram

Ve

Figure 4: Neutral scalar vertex

The contribution to the anomalous magnetic moment can be calculated from analyzing
the following Feynman diagram
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Writing the one-loop matrix element and ignoring the external factors as in the
notes

—ie(2m)'T"(p, ')

_ 4y, 74,01 34 11 — 71_4 i p”’—i—m —ie 7_‘_4#
N /d hddp ( /\)<2 ) (27'()4 (p”/)2 —m? +i€( ><2 ) 7 (55)
NN e\ O :

(2m)* (p')? — m? + e
X 54(}7 —k _p//)(54<p/// +k— p/)

_\2 4 P—k+m . pk+m 1
_Ae/dk( (56)

p’—k)Q—mQ—i-i‘Efy (p— k)2 —m? +iek? — M? + ie

(2m)* k2 — M? + e

4 F—k+ Bl — f +
W:ﬂv/°dk (' —k+mn"(p—k+m) (57)
2m)* [(pf — k)* = m?][(p — k)* — m?][k> — M?]
Using the identity from problem set 8
1 ! dxdydz
=9 —1
ABC !A5@+y+z VoAt yB 1 20 (58)

Eq.(57) becomes

= 2/0 drdydz8*(x+y+2—1) [[(0 — k)* —m*z + [(p — k)* — m*y + [k* — M?)z] -

(59)
1
= 2/ drdydz6*(x4y+2—1) [K*(z +y + 2) — 2k - (py + p'z) — m*(x +y) — M*z + p*y + p"x] -
0
(60)

10
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Completing the square

1
= 2/ drdydzd®(x +y+ 2 — 1) [(/ﬁ —px —p'y))? — (pr +p'y)* — MQZ} - (61)
0

Defining k — k + px + p'y, A = (px + p'y)? + M?z

1
= 2/ dedydz6*(z 4+ y+ 2z — 1) [k* — A - (62)
0
The numerator is given by
—F+m)(p—F+m
@ = k+mn"(p—Kk+m) (63)

~w [P (L—y) = po — k+m]| " [p(1 — 2) — p'y — k+m]

Because the denominator is even in &’ we can use the fact that &*k" = gk /4 and
drop terms odd in k' leaving us with

[P (1 —y) —pr+m] " [p(1l — z) — py +m] + F ¥ (64)

k2
=T+ (= y) (L= 2)py'p — (L= y)yp "y + (1= y)mp'y"
— (L= 2)zpyp + wypy"p’ — wmpy”
+ (1 — z)mA"p — ymy"p’ + m>y*
We can now use the Dirac equation and Clifford relation to simplify, using
Pt =20 =, pulp) = wlp)m,  a@)y =a(p)m, ¢ = —2(p-p')+2m* (66)

1.

(65)

%,2%7 o _g i o (67)

2,
(I—y)A —2)py'p = (1 —2)(1 —y)m*+" (68)

3,
(I =y)yp 'y = (1 - )ymv“p (1 —y)ym(2p™ — p'+*) (69)
= (1 —y)ym(2p™" — m~y") (70)

4,
(1 = y)mp'y* = (1 — y)m*y* (71)

11



1 SCALAR QED 1.5 Anomalous magnetic moment contribution

D.
(1 —z)apy’p = (1 — z)am(2p" —+"p) = (1 — x)zm(2p" —mr")  (72)

6.
zypy'p = wy(2p" —p)y (73)
= zym [Qp“ — (2" — p’fy“)} = zym(2¢" + y"m) (74)

7.
zmpyt = xm(2p" —y"m) (75)

8.
(1 —a2)myp = (1 — z)m** (76)

9.
ymAy'y = ym(2p" — ~'m) (77)

10.
m2aH (78)

We are uninterested in terms which are proportional to v* as they do not contribute
to the magnetic moment. Thus, putting it all together and excluding those terms we
have

~2m(pH(x — 2)x + ¢y + p*(y — 2)y) (79)
=2m [p'a® + ¢"zy + p"y? — 2(p" 'z + p*y)] (80)
[ can rewrite
200" + p"y?) = (" + ") (@ + 7)) + ¢ (2 — ) (81)
2(ptz +pMy) = W' + ") (@ +y) + ¢ (x —y) (82)

Giving,
=m [(p" +p") (2 + y°) = 2(p" + p") (@ + y) + ¢* (2 — y*) — 2¢" (& — y) + ¢"zy]

(

=m[(p" + ") (& +y* — 22— 2y) + ¢" (2" — y — 2z + 2y + 2y)] (
=2m[pryly —x —2) + p'o(y +x —2)] (85)

=m[p" +p")yly—r—-2)+x(y+r—-2)+¢"Wyly—r—-2) —x(y+x—2)2

12
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The only factors which contribute to the magnetic moment are proportional to
(p* + p™*)(because F'(0) = 1). Now we use the Gordon identity

pr Lt id"g,

— / " Y /
e atp) = ) | 5~ T ) (57)
Where o* = %[7“,7”]. We can ignore «* factor receive the contribution of the
numerator as )
whq, .,
5 2m*(yly —x —2) + z(y + x — 2)) (88)
Thus,
o ! S(yly — o — 2 —2
G(¢*) = 2i/\2m2/ dk dxdydz§3(x+y—|—z—1)k Wy—o-2)+aly+z-2)
0 (k2 —A)3
(89)
2\%m (yy—z—-2)+z(y+2x—2)
% = drdydz6* -1
Glat) = ~ 155 /0 wdydz6* @+ y + 2 — 1) . (90)
Rewriting

A = (pr+p'y)*+M?z = m?(2*+y°) 22y (pp) )+ M?2 = m? (2> +y?) +ay(2m*—¢*)+ M*>z

(91)
=m?(a? +y* + 2ay) — xyq® + Mz (92)
Leaving us with
22%m  [* (yy—z—-2)+z(y+2x—2))
G(¢*) = ——— | dxdydzs —1 93
(¢") 4(27r)2/0 vdydz0(v+y+ = )mQ(x2+y2+23:y)—a:yq2+M2,z (93)

At ¢*> = 0 we have then,

2)\2m ! (y(y—l'—Q)—l—Z’(y—i—:C—Q))

Integrating over = invokes the delta-function (x — 1 —y — z).

1—=z 1 — Z
27r / / dym2 2)2+ M?z (95)
B 1 (1-22)(1-2)
2(27r) /0 dzmz(l —2)2+ M2z (96)

This integral can be evaluated in Mathematica assuming M > m, we end up with
the neutral scalars contribution to the electrons magnetic moment as

G(0) ~ % {m <%§) - g} (07)
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