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1 MØLLER SCATTERING

1 Møller Scattering

Møller scattering or electron-electron scattering has contributions from u and t-channel
diagrams
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ū

ū
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The Feynman rules for the t-channel yield

Mt =

∫
d4q

(2π)4
[ū(p4)igeγ

µu(p2)]
−igµν
q2

[ū(p3)igeγ
νu(p1)]

(2π)8δ4(p2 + q − p4)δ
4(p1 − q − p3)

(1)

= − g2e
(p1 − p3)2

[ū(p4)γ
µu(p2)][ū(p3)γµu(p1)] (2)
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For the u-channel we have

Mu =

∫
d4q

(2π)4
[ū(p4)igeγ

µu(p1)]
−igµν
q2

[ū(p3)igeγ
νu(p2)]

(2π)8δ4(p2 + q − p3)δ
4(p1 − q − p4)

(3)

= − g2e
(p1 − p4)2

[ū(p4)γ
µu(p1)][ū(p3)γµu(p2)] (4)

Antisymmeterizing the sum of the amplitudes yields the total amplitude

Mtot = − g2e
(p1 − p3)2

[ū(p4)γ
µu(p2)][ū(p3)γµu(p1)]+

g2e
(p1 − p4)2

[ū(p4)γ
µu(p1)][ū(p3)γµu(p2)]

Defining t ≡ p1 − p3 and u ≡ p1 − p4 and switching to a more convinient notation for
the spinors u (p1,2,3,4) = u1,2,3,4. Squaring the amplitude yields

|Mtot|2 =
(
−g2e
t2
[ū4γ

µu2][ū3γµu1] +
g2e
u2

[ū4γ
µu1][ū3γµu2]

)
×
(
−g2e
t2
[ū4γ

µu2]
∗[ū3γµu1]

∗ +
g2e
u2

[ū4γ
µu1]

∗[ū3γµu2]
∗
) (5)

=g4e

(
1

t4
[ū4γ

µu2][ū3γµu1][ū4γ
νu2]

∗[ū3γνu1]
∗ − 1

t2u2
[ū4γ

µu2][ū3γµu1][ū4γ
νu1]

∗[ū3γνu2]
∗

− 1

t2u2
[ū4γ

µu1][ū3γµu2][ū4γ
νu2]

∗[ū3γνu1]
∗ +

1

u4
[ū4γ

µu1][ū3γµu2][ū4γ
νu1]

∗[ū3γνu2]
∗
)

Noting,

[ū4γ
νu1]

∗ = [u†
4γ

0γνu1]
† = [u†

1γ
ν†γ0†u4] (6)

γν† = γ0γνγ0, γ0† = γ0, and (γ0)
2
= 1

= [u1γ
0γνγ0γ0u4] = [ū1γ

νu4] (7)

Likewise,
[ū3γ

νu2]
∗ = [ū2γ

νu3] (8)

Rewriting Eq.(1)

=g4e

(
1

t4
[ū4γ

µu2][ū3γµu1][ū2γ
νu4][ū1γνu3]−

1

t2u2
[ū4γ

µu2][ū3γµu1][ū1γ
νu4][ū2γνu3]

− 1

t2u2
[ū4γ

µu1][ū3γµu2][ū2γ
νu4][ū1γνu3] +

1

u4
[ū4γ

µu1][ū3γµu2][ū1γ
νu4][ū2γνu3]

)
2
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Remembering the completeness relation for spin 1/2 particles∑
s=1,2

u(s)ū(s) = (γµpµ +mc) (9)

Focusing one term at a time as we begin to sum over the initial spins

[ū4γ
µu2][ū3γµu1][ū2γ

νu4][ū1γνu3] = [ū4γ
µu2][ū2γ

νu4][ū3γµu1][ū1γνu3] (10)

First averaging over the spins of particles one and two

1

2

∑
s1=1,2

1

2

∑
s2=1,2

ū4γ
µ[u

(s2)
2 ū

(s2)
2 ]γνu4ū3γµ[u

(s1)
1 ū

(s1)
1 ]γνu3 (11)

=
1

4
ū4γ

µ(/p2 +mec)γ
νu4ū3γµ(/p1 +mec)γνu3 (12)

=
1

4

4∑
i,j,l,m=1

[γµ(/p2 +mec)γ
ν ]ij[γµ(/p1 +mec)γν ]lm[ū4u4]ji[ū3u3]ml (13)

Summing over the spins of particles 3 and 4 now

1

4

4∑
i,j,l,m=1

[γµ(/p2+mec)γ
ν ]ij[γµ(/p1+mec)γν ]lm

∑
s4=1,2

[ū
(s4)
4 u

(s4)
4 ]ji

∑
s3=1,2

[ū
(s3)
3 u

(s3)
3 ]ml (14)

=
1

4

4∑
i,j,l,m=1

[γµ(/p2 +mec)γ
ν ]ij[γµ(/p1 +mec)γν ]lm[(/p4 +mec)]ji[(/p3 +mec)]ml (15)

=
1

4

4∑
i,l=1

[γµ(/p2 +mec)γ
ν(/p4 +mec)]ii[γµ(/p1 +mec)γν(/p3 +mec)]ll (16)

=
1

4
Tr[γµ(/p2 +mec)γ

ν(/p4 +mec)]Tr[γµ(/p1 +mec)γν(/p3 +mec)] (17)

Now we need to evaluate the traces, ignoring the small mass of the electron we are
left with

=
1

4
Tr[γµ

/p2γ
ν
/p4]Tr[γµ/p1γν/p3] =

1

4
p2σp4λp1

ξp3
ρTr[γµγσγνγλ]Tr[γµγξγνγρ] (18)

Using the identity Tr(γµγνγλγσ) = 4(gµνgλσ − gµλgνσ + gµσgνλ)

=
1

4
p2σp4λp1

ξp3
ρ
[
4(gµσgνλ − gµνgσλ + gµλgσν)4(gµξgνρ − gµνgξρ + gµρgξν)

]
(19)
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= 4p2σp4λ(g
µσgνλ − gµνgσλ + gµλgσν)p1

ξp3
ρ(gµξgνρ − gµνgξρ + gµρgξν) (20)

= 4
(
(−gµν(p2 · p4) + pµ2p

ν
4 + pν2p

µ
4)(−gµν(p1 · p3) + p1νp3µ + p1µp3ν)

)
(21)

=4
(
4(p2 · p4)(p1 · p3)− (p2 · p4)(p1 · p3)− (p2 · p4)(p1 · p3)− (p2 · p4)(p1 · p3)

+ (p1 · p4) (p2 · p3) + (p2 · p1)(p4 · p3)− (p2 · p4)(p1 · p3) + (p2 · p1)(p4 · p3)
+ (p1 · p4)(p2 · p3)

) (22)

= 8 ((p1 · p4)(p2 · p3) + (p2 · p1)(p4 · p3)) (23)

The last term in Eq.(1) is obtained in a very similar matter with p3 ↔ p4

[ū4γ
µu1][ū3γµu2][ū1γ

νu4][ū2γνu3] = 8 ((p2 · p4)(p1 · p3) + (p1 · p2)(p4 · p3)) (24)

Now we look at the cross terms,

[ū4γ
µu2][ū3γµu1][ū1γ

νu4][ū2γνu3] = [ū4γ
µu2][ū2γνu3][ū3γµu1][ū1γ

νu4] (25)

Averaging over spins for particles one and two first yields

1

4
ū4γ

µ(/p2 +mec)γ
νu3ū3γµ(/p1 +mec)γνu4 (26)

Summing over particle three

=
1

4
ū4γ

µ(/p2 +mec)γ
ν(/p3 +mec)γµ(/p1 +mec)γνu4 (27)

1

4

4∑
i,j=1

[γµ(/p2 +mec)γ
ν(/p3 +mec)γµ(/p1 +mec)γν ]ij[ū4u4]ji (28)

Summing over s4

1

4

4∑
i,j=1

[γµ(/p2 +mec)γ
ν(/p3 +mec)γµ(/p1 +mec)γν ]ij

∑
s4=1,2

[ū
(s4)
4 u

(s4)
4 ]ji (29)

=
1

4

4∑
i,j=1

[γµ(/p2 +mec)γ
ν(/p3 +mec)γµ(/p1 +mec)γν ]ij[(/p4 +mec)]ji (30)

=
1

4

4∑
i=1

[γµ(/p2 +mec)γ
ν(/p3 +mec)γµ(/p1 +mec)γν(/p4 +mec)]ii (31)
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=
1

4
Tr[γµ(/p2 +mec)γ

ν(/p3 +mec)γµ(/p1 +mec)γν(/p4 +mec)] (32)

Ignoring the mass of the electron again

≈ 1

4
Tr[γµ

/p2γ
ν
/p3γµ/p1γν/p4] (33)

=
1

4
p2σp3λp1ξp4ρTr[γ

µγσγνγλγµγ
ξγνγ

ρ] (34)

=
1

4
p2σp3λp1ξp4ρTr[γ

ργµγσγνγλγµγ
ξγν ] (35)

Using the identity Tr[γργµγσγνγλγµγ
ξγν ] = −32gρλgσξ

= −8p2σp3λp1ξp4ρg
ρλgσξ (36)

= −8(p3 · p4)(p2 · p1) (37)

Likewise, the other cross-term also gives

[ū4γ
µu1][ū3γµu2][ū2γ

νu4][ū1γνu3] = −8(p3 · p4)(p2 · p1) (38)

Putting it all together we have

⟨|Mtot|2⟩ =8g4e

(
1

t4
((p1 · p4)(p2 · p3) + (p2 · p1)(p4 · p3)) +

2

t2u2
(p3 · p4)(p2 · p1)

+
1

u4
((p2 · p4)(p1 · p3) + (p1 · p2)(p4 · p3))

) (39)

= 8g4e

(
1

t4
(p1 · p4)(p2 · p3) +

1

u4
(p2 · p4)(p1 · p3) + (p2 · p1)(p4 · p3)

(
1

t4
+

2

t2u2
+

1

u4

))
(40)

In the approximation where the electron is massless we have

t2 = (p1 − p3)
2 = p21 + p23 − 2p1 · p3 = −2p1 · p3 (41)

u2 = (p1 − p4)
2 = p21 + p24 − 2p1 · p4 = −2p1 · p4 (42)

From energy-momentum conservation p1 + p2 = p3 + p4

(p1 + p2)
2 = p21 + p22 + 2p1 · p2 = 2p1 · p2 (43)

(p3 + p4)
2 = p23 + p24 + 2p3 · p4 = 2p3 · p4 (44)
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Implying that p1 · p2 = p3 · p4. It also implies p1 · p3 = p2 · p4 and p1 · p4 = p2 · p3.
Thus,

1

t4
+

2

t2u2
+

1

u4
=

1

4(p1 · p3)2
+

2

4(p1 · p3)(p1 · p4)
+

1

4(p1 · p4)2
(45)

=
(p1 · p4)2 + 2(p1 · p3)(p1 · p4) + (p1 · p3)2

4(p1 · p3)2(p1 · p4)2
=

(p1 · p3 + p1 · p4)2

4(p1 · p3)2(p1 · p4)2
(46)

Plugging these relations back into Eq.(40)

= 8g4e

(
(p1 · p4)(p2 · p3)

4(p1 · p3)2
+

(p2 · p4)(p1 · p3)
4(p1 · p4)2

+ (p1 · p2)(p4 · p3)
(p1 · p3 + p1 · p4)2

4(p1 · p3)2(p1 · p4)2

)
(47)

= 2g4e

(
(p1 · p4)2

(p1 · p3)2
+

(p1 · p3)2

(p1 · p4)2
+ (p1 · p2)2

(
p1 · (p3 + p4)

)2
(p1 · p3)2(p1 · p4)2

)
(48)

Focusing on the numerator of the last term(
p1 · (p3 + p4)

)2
=
(
p1 · (p1 + p2)

)2
=
(
p21 + (p1 · p2)

)2
= (p1 · p2)2 (49)

Putting it all together

= 2g4e

(
(p1 · p4)2

(p1 · p3)2
+

(p1 · p3)2

(p1 · p4)2
+

(p1 · p2)4

(p1 · p3)2(p1 · p4)2

)
(50)

=
2g4e

(p1 · p3)2(p1 · p4)2
(
(p1 · p4)4 + (p1 · p3)4 + (p1 · p2)4

)
(51)

Rewriting for clarity

⟨|Mtot|2⟩ =
2g4e

(p1 · p3)2(p1 · p4)2
[
(p1 · p4)4 + (p1 · p3)4 + (p1 · p2)4

]
(52)

At last we arrive at our desired result. It is straightforward from here to calculate
the differential or total cross-section by selecting four-momenta in some frame,
recomputing ⟨|Mtot|2⟩ with these momenta and then placing the squared matrix
element into our expression for the total cross section.
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