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1 IDENTITIES

1 Identities

Use the anticommutation relation {7*,7"} = y#v" + 4"4* = 2¢" and the cyclic
property of traces (Tr(ABC) = Tr(CAB) = Tr(BCA)) to prove the following

1.1 (v")"=0for n =2k + 1 with k € Z*

First note the following property of the gamma matrices

Tr(y*) =0 (1)
The first non-trivial case is the product of three gamma matrices
Tr(y"y#2#) (2)
= Tr(2g""* Laayh® — 4129"19") (3)
— 2g”1“2T1“(7“3) _ Tr(’y“Z’y“l’y”S) (4)
— —TI"(’)/‘“Q’}/M’}/%) — _Tr(,yul,yﬂz,yus) (5)

Which implies Tr(y#1y#24#3) = 0.

Generalizing to the product of n gamma matrices with n being some odd number

Tr(yFahzahs ... hn) (6)

We can follow the same procedure
— 29M1M2Tr(pyusfyu4 .. _,yun) _ Tr(’ym’yulfym .. -”y”") (7)

— 29H1M2 29H3M4Tr<,yﬂ5,yﬂ6 e 7“”) _ Tr(,yli4,yli3/yll5 R ,ylin) _ TI‘(/VHZ,YMI,YUB R ,Y/in)

We can continue this process for each of the traces within the square brackets but
because n is odd in each of these terms we can continue to do this until we are left a
sum of Tr(~#") so the terms within the square brackets are exactly 0. Thus, we are
left with

_ _Tr(ry‘uz,y,ul,y,u,?, .. .Vun) — _Tr(7u17u27u3 .. .ry/‘n) (9)
Implying that Tr(yHyH2yks ... ~ykn) =

A slicker proof utilizes v° = i70y1y2+3



1 IDENTITIES 1.2 Tr(dh) =4a-b

1.2 Tr(d¢h) =4a-b

First noting

(79)? = 144, (V)2 = —1404 fork=1,2,3 (10)
Tr(qib) = Tr(a"v,b"v,) = a"b"Tr(y,v) = a*b"Tr(2g,, 1axa — YY) (11)
= 8a"b" g, — V" Tr(v,7,) (12)
Note for u # v,
Tr(y"y") = =Tr(v"7") = =Tr(v"7") (13)
Eq.(10) then implies the following
Tr(v"9") = ¢"Tr(1axa) (14)

Which implies that Tr(~#+") = 0 for p # v. This leaves us with
= 8a"V" g, — a0 g Tr(Laxa) (15)

= 8a"b, — 4a"'b,, = 4a"b, (16)
1.3 Tr(db¢d) = 4[(a-b)(c-d)+ (a-d)(b-c) — (a-c)(b-d)]
Tr(dbgd) = atb” e d T (7, 7%707) (17)
= "V’ " dTr((26m Laxa — Yo ¥u)Vo0n) (18)
= a"b"c”d (29, Tr (Vo) — Tr(Yu¥o 7)) (19)
= a"b’ " d (8w gor — Tr(0 (200 Laxa — VoY) V0)) (20)
= a“b”c"d’\(SgngA — 8Guogur + Tr(V VeV 1n)) (21)
= 8a"b,c’d, — 8al'c,b"d, + a“b”c"d’\Tr(”y,/yU’Wy)\) (22)
= 8a"b,c’d, — 8at'c,b"d, + arb e d (Tr[%'ya(2gu,\14x4 — %\%)]) (23)
= 8a"b,"dy, — 8atc,b’d, + a'b’c”d (8gmgu,\ — Tr[%%%\%]) (24)
= 8a"b,c’d, — 8atc,b"d, + 8a"d,b"c, — Tr (VYo yA V) (25)
= 8a"b,c’d, — 8atc,b"d, + 8a"d,b"c, — Tr (v, Yovn) (26)

Let’s rewrite for explicitness

a“b“c"d)‘Tr(fyu’yl/yU’yA) = 8a"b,c’d, — 8a"c,b"d, + 8a"d,b"c, — a“b”c"d’\Tr(fyu’yl,%fyA)

Qa”b”c"dATr('yufy,/yg’y,\) = 8a"b,c’d, — 8a'c,b"d, + 8a"d,b"c, (27)
Tr(dbdd) = 4[a*b,.c”d, — a'c,b’d, + a'd,b"c,] (28)
=4[(a-b)(c-d)+(a-d)(b-c)—(a-c)(b-d)] (29)
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1 IDENTITIES

1.4 " = =24

1.4 yudy" = =24

Vufr" = Yuay "
= Yu(29"" Laxa — ¥7")as
=20+ 0"
Note the following

12 1 v
YV = gV = §(QW + o)V

(33)

Where I have decomposed ¢ into its symmetric and antisymmetric parts' (antisym-

metric part is zero)
1 v v
= 5(9#1/7 7# + GuuY fylu)

Relabeling indices on the second term

1 v v
= §(ng Y + gy Y")

1
= §gNV{7M7 /yu} = gw/guyl4><4 = 414><4

Plugging this result back into Eq.(32) yields

— 24— 4 = ~24

1.5 wqi]é’y“ =4a-b
Vb = 17" 4 bo
= 7Y (297" Lasea — V") @by
= 2Bg — 7,(29"*Lases — Y7 )a, b
= 2pgt — 24P + v, 7" dP
= 4(a - b) — 4gp + 4gdp
=4(a-b)

(34)

(35)

(36)

(37)

!Generally any tensor A;; of rank two can be decomposed into a sum of a symmetric and
antisymmetric tensor i.e. A;; = B;; +Cy; = %(Aij +Aj)+ %(Aij — Aj;) where it can be seen in the

second equality that Bij = %(Aij + Aﬂ) and Oqj = %(Aij — Aﬂ)
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2 DIRAC ALGEBRA 1.6 7y dbiy" = —2¢bd

1.6 byt = —2¢bd

Vb = 77" M avbec
=777 (29N = 4"y )avbecy

= 244h — 17" (267" — 477 )avbod

= 20 — 2bde + v, (29" — A" )aybe
= 244b — 2bd¢ + 24b¢ — v, db¢
= 244p — 2bd¢ — 24p¢
= 2¢4b — 2 (b + ¢b) ¢ = 2¢db — 2{", 7" }a, bo¢
— 244 — d(a- )¢
= 2¢(2(a - b) — pdt) — 4(a - b)¢
= 24

2 Dirac algebra

Show that the Dirac matrices defined in the lecture satisfy the identities using the

Clifford relation rather than an explicit representation.

The Clifford relation is given by

{797} = 29" 144

2.1 Te([[75 ") =0
First note the following property of the gamma martices
Tr(y#) =0
The first non-trivial case is the prodcut of three gamma matrices
Tr(y"129)
= Tr(2g""* Lyxay® — A2"1y")
= 29" Tr(7") — Tr(y"29"19)
= —Tr(yf2My) = =Tr(y"4"291)
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2 DIRAC ALGEBRA 2.2 {454} =0

Which implies Tr(y#1y#2+4#3) = 0.

Generalizing to the product of n gamma matrices with n being some odd number

Tr(yH a2yt - qtn) (60)
We can follow the same procedure

= 29T (yfon -yt = T (e i) (61)

= 2gHH2 | QgHIHATy (HoHe i) — T (yHantSnhs o qbin) | — T (yH2Htahs o ohin)

(62)
We can continue this process for each of the traces within the square brackets but
because n is odd in each of these terms we can continue to do this until we are left a
sum of Tr(y#). Thus, we are just left with

= (94 o) = Ty ) (63)
Implying that Tr(yF1yk2zks ... ykn) = ()

A slicker proof utilizes v° = i70y1y2~3

2.2 {4} =0

First noting

(Y")? = 1404, (Y*)?2 = —144 fork=1,2,3 (64)

L L S e e e i o e e e ' (65)

= i’y Py 4+ (20" P — APy (66)

= i7" + 2ig"0 Y — (291707 — A0y %P) (67)

= i’y Py 4 290y Pyt — 2ig" 0y + i (29" — A0y yRT) (68)

= i7" VPP 4+ 2ig" v VPP = 2ig" 0 + 209" 0y P =i (27407 P =0y PR
= 2i(g"7'*y® = g0 4+ g0 — gAY A% ) (69)

Now I can check for each value of

1. p=20
2i (7' 7% + 707 *y%H0) (70)
= 2i(v'v** + (=1)°4"*7*7%°) (71)
~0 (72)



2 DIRAC ALGEBRA 2.3 Tr(v%) =0

2. p=1
2i(—"7v*7* +1°7" %) (73)
= 2i(7°7*7° + (=1)*’7* 7y ") (74)
=0 (75)
3. u=2
= 2i(—"7'® + (-1)"7°+'7*4242) (77)
=0 (78)
20(7"7" 7 + 9% ") (79)
=0 (80)

Tr(7°) = Tr(i7°7'9%7%) = (=1)%Tr(v'4*9*°) = —iTr(v°7'7%%) = =Tr(+°) (81)
Thus, Tr(7°) =0

2.4 (7°)% = 144

)2 =7°9% = =913 091929 = —(=1)°197%9 1922 = (=1)% 'y P2

= —(=1)"**7*y = Luxa (82)

(v

Now using (when neccesary) the chiral representation given by,

0 __ 01 i_ 0 Qi 5 _ -1 0 s
Y _<l 0 T = _gi 0 7= 0 l 2_17273 (83)

where the underline indicates a two by two matrix. Show that
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2 DIRAC ALGEBRA

2.5 [y1p

Where

E’}/O

!
0010 = 704040 = 40 (84)
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2 DIRAC ALGEBRA 26 5 = A5t

4. p=3
0010 0 0 -1 0 0010
oito 000 1]lo 0o o 1]foo0o01
Tt oo0o0f{1t 0 0 of|l1o0o00 (1)
01 00 0 -1 0 0 01 00
0010 -1 00 O
0001 0 10 0
11000 0 01 O (92)
01 00 0 0 0 —1
0O 01 O
o 00 -1}
“l-100 0|77 (93)
0 1 0 O
2.6 ~°= ’y5T
Eq.(83) shows 7 is diagonal and has real entries thus,
P = (94)
Also from Eq.(83) we see that
,ym‘ — g[uu}yu (95)
Where no summation is implied, g**! is a place holder for positive and negative values
ie. gl =1,¢P =1, ¢B% = -1, ¢[* = —1 implying
(MF=7"  ()=—"  fori=1,23 (96)
I could also write this as
(7" = 9"° (97)
Noting that gdghl =1
v /l/ v /1: v /l: vv v v
T = = T = g Y = T (98)
(770 = 3Tyt = —gluslaBop = glilyiings (99)
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2.7 ()"

2 DIRAC ALGEBRA

()" = —Cyrc

Where C = —iv?j

2.7
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2 DIRAC ALGEBRA 2.7 (7T = —CyrC!

0O 0 0 4
. 0 0 — 0 2 NT
i 0 0 0
4. p=3
0 1.0 0 0 01 0 0 -1 0 0
1 00 O 0 00 -1 1 0 0 0
31
ere 000 -1)|l-100 0|0 0o o0 1
0O 01 0 0 1.0 0 0 0 -1 0
0 0 -1 0
1o 0 0 1| 37
0 -1 0 O
Likewise,
(V) =9" (106)
(V) = ()T ()" = —%CHt et = Cytre (107)
Where I have used the fact that [y°,C] = 0 and {7°,v*} = 0.
(T =g =g (108)
Due to the antisymmetry of J#.
Under complex conjugation we have
7= (109)
(V") = (") = (g"yy®)T = ghicyryie ™! (110)
(J*) = (TN = (") = - (111)
P = (N = (9T = —glriey T = g Cyre! (112)
Where I have abused notation for convenience, gjog) = —1, gji) = 1 for i = 1,2, 3.
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2 DIRAC ALGEBRA 2.8 AV = ghP 4 gUPyl — ghPyY — e MPy AP

2.8 Yyl =gy gt — gty —ie P
There are 4% = 64 combinations of indices, we consider
L.u=v=p [x4]
777 = %" + g7 — g% =1° (113)
YA =gy + gty = gty = = (114)
2. p=v#EppFv=ppu=pFv  [x36]

All of these cases are very similar, I'll illustrate the general idea for = v # p.
On the left hand side we obtain

AP = g[uulvp (115)
On the right hand side

g[uu}fyp + gHPyR PPy — e uup%ﬁ — g[uu],yp (116)

3opFvEp  [x24]

Again, all of the combinations are very similar, I will do a few examples to
illustrate. In this case all that is left on the right hand side is the anti-symmetric
symbol

(a) p=0,v=1,p=2

Pyly? = —ie®Py5y° = ()01 = (1) (1) (—1)*" 'Yy = %1
(117)
(b) u=1v=3,p=0
,71/7370 — _i€2130,y2,y5 — 82130( v )70717273 _ 213()(_1)27071727273
(118)
=177 = (=1)*7'7°7" = 7'y (119)

(c¢) One last example: p=3,v=2p=1

737271 — _ 0321,}/ ,y . 50321’707071’}/273 _ 717273 — ( 1)3737271
(120)
= v*y24! (121)

The other permutations follow very closely to those above.
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3 MORE DIRAC ALGEBRA

3 More Dirac Algebra

Show the following relations

3.1  Tr[yfantzatsyland] = —4jghtrihsta

The only contributing case is when uy # ps # pus # pg. In this case, the trace is
proportional to the antisymmetric symbol due to the anticommutation of gamma
matrices with differing indices. To find the proportionality constant we can simply
do a test case of uqpopsiy = 0123.

Tr[y°7'%7*%] = T [y ' 777 %) (122)
= i(—1)*Tr[y°7°7' %%y 194" (123)
= —i(=1)*Tr[y'y'y*y*7*4"] (124)
= i(=1)Tr[y*7*7%y (125)
Thus, the proportionality constant is —47 and
Tr[7“17“27“3’7”4’}/5] = —4jetpipzpa (127)
3.2 Ay, = =297
,yu,yu,yu — 29/“’7“ — ’YV’Y’M’)/M (128)
Noting
v 1 14
Y'Y =9 = 9wV = (G + G )V N (129)

2

Where I have decomposed ¢g*” into its symmetric and antisymmetric parts® (antisym-
metric part is zero)

1 v v
= 597" + 907" 7") (130)
Relabeling indices on the second term
1 v v
= 5 (9" + 9u"7") (131)

2Generally any tensor A;; of rank two can be decomposed into a sum of a symmetric and
antisymmetric tensor i.e. A;; = B;; +Cy; = %(Aij +Aj)+ %(Aij — Aj;) where it can be seen in the
second equality that Bij = %(Aij + Aﬂ) and 07] = %(Aij — Aﬂ)
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3 MORE DIRAC ALGEBRA 3.3 Yyl = 497

1
B §guv{7H;7V} = G 9" Laxa = 4144

Plugging this result back into Eq.(128)

v

= 29", — 4y

3.3 My = 49"
VY'Y = 26"V v — VA Y Y
= 20" — 29" v + Y
= 20"V — 29" v + 4P
= 2Pt — 2P 4 AP = 2(79711 + VVWP)
=2{1",7"} = 49"

3.4 AT = =27

YA YAV = 29" v = A

= 20" % = 9"V YAV
= 20" = 29"V v + 29" Y v — VAP Y

= 29P779" = 29"979" + 2979P97 — 4y
= 29P979" = 29"979P — 2979P°
=279 = 29"(v77" +9777) = 29777 = 297{77, 7"}
= 49"7" — 27"y — 49”7 "
= =27
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