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1 IDENTITIES

1 Identities

Use the anticommutation relation {γµ, γν} = γµγν + γνγµ = 2gµν and the cyclic
property of traces (Tr(ABC) = Tr(CAB) = Tr(BCA)) to prove the following

1.1 (γµ)n = 0 for n = 2k + 1 with k ∈ Z+

First note the following property of the gamma matrices

Tr(γµ) = 0 (1)

The first non-trivial case is the product of three gamma matrices

Tr(γµ1γµ2γµ3) (2)

= Tr(2gµ1µ214×4γ
µ3 − γµ2γµ1γµ3) (3)

= 2gµ1µ2Tr(γµ3)− Tr(γµ2γµ1γµ3) (4)

= −Tr(γµ2γµ1γµ3) = −Tr(γµ1γµ2γµ3) (5)

Which implies Tr(γµ1γµ2γµ3) = 0.

Generalizing to the product of n gamma matrices with n being some odd number

Tr(γµ1γµ2γµ3 · · · γµn) (6)

We can follow the same procedure

= 2gµ1µ2Tr(γµ3γµ4 · · · γµn)− Tr(γµ2γµ1γµ3 · · · γµn) (7)

= 2gµ1µ2

[
2gµ3µ4Tr(γµ5γµ6 · · · γµn)− Tr(γµ4γµ3γµ5 · · · γµn)

]
− Tr(γµ2γµ1γµ3 · · · γµn)

(8)
We can continue this process for each of the traces within the square brackets but
because n is odd in each of these terms we can continue to do this until we are left a
sum of Tr(γµn) so the terms within the square brackets are exactly 0. Thus, we are
left with

= −Tr(γµ2γµ1γµ3 · · · γµn) = −Tr(γµ1γµ2γµ3 · · · γµn) (9)

Implying that Tr(γµ1γµ2γµ3 · · · γµn) = 0

A slicker proof utilizes γ5 ≡ iγ0γ1γ2γ3
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1 IDENTITIES 1.2 Tr(/a/b) = 4a · b

1.2 Tr(/a/b) = 4a · b
First noting

(γ0)2 = 14×4, (γk)2 = −14×4 for k = 1, 2, 3 (10)

Tr(/a/b) = Tr(aµγµb
νγν) = aµbνTr(γµγν) = aµbνTr(2gµν14×4 − γνγµ) (11)

= 8aµbνgµν − aµbνTr(γνγµ) (12)

Note for µ ̸= ν,
Tr(γµγν) = −Tr(γνγµ) = −Tr(γµγν) (13)

Eq.(10) then implies the following

Tr(γµγν) = gµνTr(14×4) (14)

Which implies that Tr(γµγν) = 0 for µ ̸= ν. This leaves us with

= 8aµbνgµν − aµbνgµνTr(14×4) (15)

= 8aµbµ − 4aµbµ = 4aµbµ (16)

1.3 Tr(/a/b/c/d) = 4 [(a · b)(c · d) + (a · d)(b · c)− (a · c)(b · d)]
Tr(/a/b/c/d) = aµbνcσdλTr(γµγνγσγλ) (17)

= aµbνcσdλTr((2gµν14×4 − γνγµ)γσγλ) (18)

= aµbνcσdλ (2gµνTr(γσγλ)− Tr(γνγµγσγλ)) (19)

= aµbνcσdλ(8gµνgσλ − Tr(γν(2gµσ14×4 − γσγµ)γλ)) (20)

= aµbνcσdλ(8gµνgσλ − 8gµσgνλ + Tr(γνγσγµγλ)) (21)

= 8aµbµc
σdσ − 8aµcµb

νdν + aµbνcσdλTr(γνγσγµγλ) (22)

= 8aµbµc
σdσ − 8aµcµb

νdν + aµbνcσdλ
(
Tr[γνγσ(2gµλ14×4 − γλγµ)]

)
(23)

= 8aµbµc
σdσ − 8aµcµb

νdν + aµbνcσdλ
(
8gνσgµλ − Tr[γνγσγλγµ]

)
(24)

= 8aµbµc
σdσ − 8aµcµb

νdν + 8aµdµb
νcν − Tr(γνγσγλγµ) (25)

= 8aµbµc
σdσ − 8aµcµb

νdν + 8aµdµb
νcν − Tr(γµγνγσγλ) (26)

Let’s rewrite for explicitness

aµbνcσdλTr(γµγνγσγλ) = 8aµbµc
σdσ − 8aµcµb

νdν +8aµdµb
νcν − aµbνcσdλTr(γµγνγσγλ)

2aµbνcσdλTr(γµγνγσγλ) = 8aµbµc
σdσ − 8aµcµb

νdν + 8aµdµb
νcν (27)

Tr(/a/b/c/d) = 4[aµbµc
σdσ − aµcµb

νdν + aµdµb
νcν ] (28)

= 4 [(a · b)(c · d) + (a · d)(b · c)− (a · c)(b · d)] (29)
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1 IDENTITIES 1.4 γµ/aγ
µ = −2/a

1.4 γµ/aγ
µ = −2/a

γµ/aγ
µ = γµaνγ

νγµ (30)

= γµ(2g
νµ14×4 − γµγν)aν (31)

= 2/a+ γµγ
µ/a (32)

Note the following

γµγ
µ = gµνγ

νγµ =
1

2
(gµν + gνµ)γ

νγµ (33)

Where I have decomposed gµν into its symmetric and antisymmetric parts1 (antisym-
metric part is zero)

=
1

2
(gµνγ

νγµ + gνµγ
νγµ) (34)

Relabeling indices on the second term

=
1

2
(gµνγ

νγµ + gµνγ
µγν) (35)

=
1

2
gµν{γµ, γν} = gµνg

µν14×4 = 414×4 (36)

Plugging this result back into Eq.(32) yields

= 2/a− 4/a = −2/a (37)

1.5 γµ/a/bγ
µ = 4a · b

γµ/a/bγ
µ = γµγ

νγσγµaνbσ (38)

= γµγ
ν(2gσµ14×4 − γµγσ)aνbσ (39)

= 2/b/a− γµ(2g
νµ14×4 − γµγν)aν/b (40)

= 2/b/a− 2/a/b + γµγ
µ/a/b (41)

= 4(a · b)− 4/a/b + 4/a/b (42)

= 4(a · b) (43)

1Generally any tensor Aij of rank two can be decomposed into a sum of a symmetric and
antisymmetric tensor i.e. Aij = Bij +Cij =

1
2 (Aij +Aji) +

1
2 (Aij −Aji) where it can be seen in the

second equality that Bij ≡ 1
2 (Aij +Aji) and Cij ≡ 1

2 (Aij −Aji)
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2 DIRAC ALGEBRA 1.6 γµ/a/b/cγ
µ = −2/c/b/a

1.6 γµ/a/b/cγ
µ = −2/c/b/a

γµ/a/b/cγ
µ = γµγ

νγσγλγµaνbσcλ (44)

= γµγ
νγσ(2gλµ − γµγλ)aνbσcλ (45)

= 2/c/a/b − γµγ
ν(2gσµ − γµγσ)aνbσ/c (46)

= 2/c/a/b − 2/b/a/c + γµ(2g
νµ − γµγν)aν/b/c (47)

= 2/c/a/b − 2/b/a/c + 2/a/b/c − γµγ
µ/a/b/c (48)

= 2/c/a/b − 2/b/a/c − 2/a/b/c (49)

= 2/c/a/b − 2
(
/b/a+ /a/b

)
/c = 2/c/a/b − 2{γσ, γν}aνbσ/c (50)

= 2/c/a/b − 4(a · b)/c (51)

= 2/c(2(a · b)− /b/a)− 4(a · b)/c (52)

= −2/c/b/a (53)

2 Dirac algebra

Show that the Dirac matrices defined in the lecture satisfy the identities using the
Clifford relation rather than an explicit representation.

The Clifford relation is given by

{γµ, γν} = 2gµν14×4 (54)

2.1 Tr(
∏odd

i=1 γµi) = 0

First note the following property of the gamma martices

Tr(γµ) = 0 (55)

The first non-trivial case is the prodcut of three gamma matrices

Tr(γµ1γµ2γµ3) (56)

= Tr(2gµ1µ214×4γ
µ3 − γµ2γµ1γµ3) (57)

= 2gµ1µ2Tr(γµ3)− Tr(γµ2γµ1γµ3) (58)

= −Tr(γµ2γµ1γµ3) = −Tr(γµ1γµ2γµ3) (59)
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2 DIRAC ALGEBRA 2.2 {γ5, γµ} = 0

Which implies Tr(γµ1γµ2γµ3) = 0.

Generalizing to the product of n gamma matrices with n being some odd number

Tr(γµ1γµ2γµ3 · · · γµn) (60)

We can follow the same procedure

= 2gµ1µ2Tr(γµ3γµ4 · · · γµn)− Tr(γµ2γµ1γµ3 · · · γµn) (61)

= 2gµ1µ2

[
2gµ3µ4Tr(γµ5γµ6 · · · γµn)− Tr(γµ4γµ3γµ5 · · · γµn)

]
− Tr(γµ2γµ1γµ3 · · · γµn)

(62)
We can continue this process for each of the traces within the square brackets but
because n is odd in each of these terms we can continue to do this until we are left a
sum of Tr(γµn). Thus, we are just left with

= −Tr(γµ2γµ1γµ3 · · · γµn) = −Tr(γµ1γµ2γµ3 · · · γµn) (63)

Implying that Tr(γµ1γµ2γµ3 · · · γµn) = 0

A slicker proof utilizes γ5 ≡ iγ0γ1γ2γ3

2.2 {γ5, γµ} = 0

First noting
(γ0)2 = 14×4, (γk)2 = −14×4 for k = 1, 2, 3 (64)

{γ5, γµ} = iγ0γ1γ2γ3γµ + iγµγ0γ1γ2γ3 (65)

= iγ0γ1γ2γ3γµ + i(2gµ0γ1γ2γ3 − γ0γµγ1γ2γ3) (66)

= iγ0γ1γ2γ3γµ + 2igµ0γ1γ2γ3 − i(2gµ1γ0γ2γ3 − γ0γ1γµγ2γ3) (67)

= iγ0γ1γ2γ3γµ + 2igµ0γ1γ2γ3 − 2igµ1γ0γ2γ3 + i(2gµ2γ0γ1γ3 − γ0γ1γ2γµγ3) (68)

= iγ0γ1γ2γ3γµ+2igµ0γ1γ2γ3−2igµ1γ0γ2γ3+2igµ2γ0γ1γ3−i(2gµ3γ0γ1γ2−γ0γ1γ2γ3γµ)

= 2i(gµ0γ1γ2γ3 − gµ1γ0γ2γ3 + gµ2γ0γ1γ3 − gµ3γ0γ1γ2 + γ0γ1γ2γ3γµ) (69)

Now I can check for each value of µ

1. µ = 0
2i(γ1γ2γ3 + γ0γ1γ2γ3γ0) (70)

= 2i(γ1γ2γ3 + (−1)3γ1γ2γ3γ0γ0) (71)

= 0 (72)
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2 DIRAC ALGEBRA 2.3 Tr(γ5) =0

2. µ = 1
2i(−γ0γ2γ3 + γ0γ1γ2γ3γ1) (73)

= 2i(γ0γ2γ3 + (−1)2γ0γ2γ3γ1γ1) (74)

= 0 (75)

3. µ = 2
2i(−γ0γ1γ3 + γ0γ1γ2γ3γ2) (76)

= 2i(−γ0γ1γ3 + (−1)1γ0γ1γ3γ2γ2) (77)

= 0 (78)

4. µ = 3
2i(γ0γ1γ2 + γ0γ1γ2γ3γ3) (79)

= 0 (80)

2.3 Tr(γ5) =0

Tr(γ5) = Tr(iγ0γ1γ2γ3) = (−1)3iTr(γ1γ2γ3γ0) = −iTr(γ0γ1γ2γ3) = −Tr(γ5) (81)

Thus, Tr(γ5) = 0

2.4 (γ5)2 = 14×4

(γ5)2 = γ5γ5 = −γ0γ1γ2γ3γ0γ1γ2γ3 = −(−1)3γ0γ0γ1γ2γ3γ1γ2γ3 = (−1)2γ1γ1γ2γ3γ2γ3

= −(−1)1γ2γ2γ3γ3 = 14×4 (82)

Now using (when neccesary) the chiral representation given by,

γ0 =

(
0 1
1 0

)
γi =

(
0 σi

−σi 0

)
γ5 =

(
−1 0
0 1

)
i = 1, 2, 3 (83)

where the underline indicates a two by two matrix. Show that
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2 DIRAC ALGEBRA 2.5 βγµ†β = γµ

2.5 βγµ†β = γµ

Where β ≡ γ0

1. µ = 0

γ0γ0†γ0 = γ0γ0γ0 = γ0 (84)

2. µ = 1

γ0γ1†γ0 =


0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0



0 0 0 −1
0 0 −1 0
0 1 0 0
1 0 0 0



0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

 (85)

=


0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0




0 −1 0 0
−1 0 0 0
0 0 0 1
0 0 1 0

 (86)

=


0 0 0 1
0 0 1 0
0 −1 0 0
−1 0 0 0

 = γ1 (87)

3. µ = 2

γ0γ1†γ0 =


0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0



0 0 0 i
0 0 −i 0
0 −i 0 0
i 0 0 0



0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

 (88)

=


0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0




0 i 0 0
−i 0 0 0
0 0 0 −i
0 0 i 0

 (89)

=


0 0 0 −i
0 0 i 0
0 i 0 0
−i 0 0 0

 = γ2 (90)
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2 DIRAC ALGEBRA 2.6 γ5 = γ5†

4. µ = 3

γ0γ1†γ0 =


0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0



0 0 −1 0
0 0 0 1
1 0 0 0
0 −1 0 0



0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

 (91)

=


0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0



−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1

 (92)

=


0 0 1 0
0 0 0 −1
−1 0 0 0
0 1 0 0

 = γ3 (93)

2.6 γ5 = γ5†

Eq.(83) shows γ5 is diagonal and has real entries thus,

γ5† = γ5 (94)

Also from Eq.(83) we see that
γµ† = g[µµ]γµ (95)

Where no summation is implied, g[µµ] is a place holder for positive and negative values
i.e. g[11] = 1, g[22] = −1, g[33] = −1, g[44] = −1 implying

(γ0)† = γ0, (γi)† = −γi for i = 1, 2, 3 (96)

I could also write this as
(γµ)† = γ0γµγ0 (97)

Noting that g[µµ]g[νν] = 1

J µν† =
i

4
{γµ, γν}† = i

4
{γµ†, γν†} =

i

4
g[µµ]g[νν]{γµ, γν} = J µν (98)

(γµγ5)† = γ5†γµ† = −g[µµ]γ5γµ = g[µµ]γµγ5 (99)
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2 DIRAC ALGEBRA 2.7 (γµ)T = −CγµC−1

2.7 (γµ)T = −CγµC−1

Where C ≡ −iγ2β

C = −i

(
0 σ2

−σ2 0

)(
0 1
1 0

)
= −i

(
σ2 0
0 −σ2

)
=


0 1 0 0
−1 0 0 0
0 0 0 −1
0 0 1 0

 =

(
σ1 0
0 −σ1

)
(100)

C−1 =


0 −1 0 0
1 0 0 0
0 0 0 1
0 0 −1 0

 (101)

1. µ = 0

−Cγ0C−1 = −


0 1 0 0
−1 0 0 0
0 0 0 −1
0 0 1 0



0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0



0 −1 0 0
1 0 0 0
0 0 0 1
0 0 −1 0



=


0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

 = γ0 = (γ0)T (102)

2. µ = 1

−Cγ1C−1 = −


0 1 0 0
−1 0 0 0
0 0 0 −1
0 0 1 0




0 0 0 1
0 0 1 0
0 −1 0 0
−1 0 0 0



0 −1 0 0
1 0 0 0
0 0 0 1
0 0 −1 0



=


0 0 0 −1
0 0 −1 0
0 1 0 0
1 0 0 0

 = (γ1)T (103)

3. µ = 2

−Cγ2C−1 = −


0 1 0 0
−1 0 0 0
0 0 0 −1
0 0 1 0




0 0 0 i
0 0 −i 0
0 −i 0 0
i 0 0 0



0 −1 0 0
1 0 0 0
0 0 0 1
0 0 −1 0


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2 DIRAC ALGEBRA 2.7 (γµ)T = −CγµC−1

=


0 0 0 i
0 0 −i 0
0 −i 0 0
i 0 0 0

 = γ2 = (γ2)T (104)

4. µ = 3

−Cγ3C−1 = −


0 1 0 0
−1 0 0 0
0 0 0 −1
0 0 1 0




0 0 1 0
0 0 0 −1
−1 0 0 0
0 1 0 0



0 −1 0 0
1 0 0 0
0 0 0 1
0 0 −1 0



=


0 0 −1 0
0 0 0 1
1 0 0 0
0 −1 0 0

 = (γ3)T (105)

Likewise,
(γ5)T = γ5 (106)

(γµγ5)T = (γ5)T (γµ)T = −γ5CγµC−1 = Cγµγ5C−1 (107)

Where I have used the fact that [γ5, C] = 0 and {γ5, γµ} = 0.

(J µν)T = J νµ = −J µν (108)

Due to the antisymmetry of J µν .

Under complex conjugation we have

γ5∗ = γ5 (109)

(γµγ5)∗ = ((γµγ5)†)T = (g[µµ]γµγ5)T = g[µµ]Cγµγ5C−1 (110)

(J µν)∗ = ((J µν)†)T = (J µν)T = −J µν (111)

γµ∗ = ((γµ)†)T = (g[µµ]γµ)T = −g[µµ]CγµC−1 = g[µµ]CγµC−1 (112)

Where I have abused notation for convenience, g[00] = −1, g[ii] = 1 for i = 1, 2, 3.
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2 DIRAC ALGEBRA 2.8 γµγνγρ = gµνγρ + gνργµ − gµργν − iελµνργλγ
5

2.8 γµγνγρ = gµνγρ + gνργµ − gµργν − iελµνργλγ
5

There are 43 = 64 combinations of indices, we consider

1. µ = ν = ρ [×4]

γ0γ0γ0 = g00γ0 + g00γ0 − g00γ0 = γ0 (113)

γiγiγi = giiγi + giiγi − giiγi = −γi (114)

2. µ = ν ̸= ρ, µ ̸= ν = ρ, µ = ρ ̸= ν [×36]

All of these cases are very similar, I’ll illustrate the general idea for µ = ν ≠ ρ.
On the left hand side we obtain

γµγµγρ = g[µµ]γρ (115)

On the right hand side

g[µµ]γρ + gµργµgµργν − iελµµργλγ
5 = g[µµ]γρ (116)

3. µ ̸= ν ̸= ρ [×24]

Again, all of the combinations are very similar, I will do a few examples to
illustrate. In this case all that is left on the right hand side is the anti-symmetric
symbol

(a) µ = 0, ν = 1, ρ = 2

γ0γ1γ2 = −iε3012γ3γ
5 = ε3012(−γ3)γ0γ1γ2γ3 = (−1)(−1)(−1)3γ0γ1γ2γ3γ3 = γ0γ1γ2

(117)

(b) µ = 1, ν = 3, ρ = 0

γ1γ3γ0 = −iε2130γ2γ
5 = ε2130(−γ2)γ0γ1γ2γ3 = −ε2130(−1)2γ0γ1γ2γ2γ3

(118)
= γ0γ1γ3 = (−1)2γ1γ3γ0 = γ1γ3γ0 (119)

(c) One last example: µ = 3, ν = 2, ρ = 1

γ3γ2γ1 = −iε0321γ0γ
5 = ε0321γ0γ0γ1γ2γ3 = −γ1γ2γ3 = −(−1)3γ3γ2γ1

(120)
= γ3γ2γ1 (121)

The other permutations follow very closely to those above.
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3 MORE DIRAC ALGEBRA

3 More Dirac Algebra

Show the following relations

3.1 Tr[γµ1γµ2γµ3γµ4γ5] = −4iεµ1µ1µ3µ4

The only contributing case is when µ1 ̸= µ2 ̸= µ3 ≠ µ4. In this case, the trace is
proportional to the antisymmetric symbol due to the anticommutation of gamma
matrices with differing indices. To find the proportionality constant we can simply
do a test case of µ1µ2µ3µ4 = 0123.

Tr[γ0γ1γ2γ3γ5] = iTr[γ0γ1γ2γ3γ0γ1γ2γ3] (122)

= i(−1)3Tr[γ0γ0γ1γ2γ3γ1γ2γ3] (123)

= −i(−1)2Tr[γ1γ1γ2γ3γ2γ3] (124)

= i(−1)Tr[γ2γ2γ3γ3] (125)

= −iTr[14×4] = −4i (126)

Thus, the proportionality constant is −4i and

Tr[γµ1γµ2γµ3γµ4γ5] = −4iεµ1µ1µ3µ4 (127)

3.2 γµγνγµ = −2γν

γµγνγµ = 2gµνγµ − γνγµγµ (128)

Noting

γµγµ = γµγ
µ = gµνγ

νγµ =
1

2
(gµν + gνµ)γ

νγµ (129)

Where I have decomposed gµν into its symmetric and antisymmetric parts2 (antisym-
metric part is zero)

=
1

2
(gµνγ

νγµ + gνµγ
νγµ) (130)

Relabeling indices on the second term

=
1

2
(gµνγ

νγµ + gµνγ
µγν) (131)

2Generally any tensor Aij of rank two can be decomposed into a sum of a symmetric and
antisymmetric tensor i.e. Aij = Bij +Cij =

1
2 (Aij +Aji) +

1
2 (Aij −Aji) where it can be seen in the

second equality that Bij ≡ 1
2 (Aij +Aji) and Cij ≡ 1

2 (Aij −Aji)
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3 MORE DIRAC ALGEBRA 3.3 γµγνγργµ = 4gνρ

=
1

2
gµν{γµ, γν} = gµνg

µν14×4 = 414×4 (132)

Plugging this result back into Eq.(128)

= 2gµνγµ − 4γν (133)

= −2γν (134)

3.3 γµγνγργµ = 4gνρ

γµγνγργµ = 2gµνγργµ − γνγµγργµ (135)

= 2gµνγργµ − 2gµργνγµ + γνγργµγµ (136)

= 2gµνγργµ − 2gµργνγµ + 4γνγρ (137)

= 2γργµ − 2γνγρ + 4γνγρ = 2(γργν + γνγρ) (138)

= 2{γν , γρ} = 4gνρ (139)

3.4 γµγνγργσγµ = −2γσγργν

γµγνγργσγµ = 2gµνγργσγµ − γνγµγργσγµ (140)

= 2gµνγργσγµ − gµργνγσγµ + γνγργµγσγµ (141)

= 2gµνγργσγµ − 2gµργνγσγµ + 2gµσγνγργµ − γνγργσγµγµ (142)

= 2γργσγν − 2γνγσγρ + 2γνγργσ − 4γνγργσ (143)

= 2γργσγν − 2γνγσγρ − 2γνγργσ (144)

= 2γργσγν − 2γν(γσγρ + γργσ) = 2γργσγν − 2γν{γσ, γρ} (145)

= 4gρσγν − 2γσγργν − 4gρσγν (146)

= −2γσγργν (147)
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