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1 COMPTON SCATTERING

1 Compton scattering

Here we compute the differential cross section for Compton scattering (e−γ → e−γ) as
a function of the polar angle θ, evaluated in the rest system of the initial-state electron,
between the direction of the incoming photon and the out-going photon.

1.1 Diagrams
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Figure 1: [A] Shows the t-channel Feynman diagram and [B] shows the s-channel
Feynman diagram

1.2 Matrix Elements

The scattering amplitude for the t-channel diagram is given by

−2πiδ4(p3 + p4 − p2 − p1)Mt =∫
ϵµ(p2, σ2)

(2π)3/2
√

2p02

[
ū(p4, σ4)

(2π)3/2
(−ie)γµ 1

(2π)4
i(/q +me)

q2 −m2
e + iε

(−ie)γν u(p1, σ1)

(2π)3/2

]
ϵ∗ν(p3, σ3)

(2π)3/2
√

2p03
× (2π)4δ4(p2 + q − p4)(2π)

4δ4(p1 − q − p3)d
4q

(1)
Switching to a more concise, but still clear, notation

=
−ie2

(2π)2(q′2 −m2
e)
√

4p02p
0
3

[ū4 /ϵ2(/q
′ +me)/ϵ

∗
3u1]δ

4(p4 + p3 − p2 − p1) (2)
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1 COMPTON SCATTERING 1.2 Matrix Elements

Where q′ ≡ p1 − p3. Thus,

Mt =
−e2

(2π)3(q′2 −m2
e)
√

4p02p
0
3

[ū4 /ϵ2(/q
′ +me)/ϵ

∗
3u1] (3)

This can be simplified further by noting the following

(/p1 − /p3 +me)γ
νu1 = −/p3γ

νu1 + (γργνp1ρ + γνme)u1 (4)

= −/p3γ
νu1 + ([2gρν − γνγρ]p1ρ + γνme)u = −/p3γ

νu1 + 2pνu− γν(/p1 −me)u1 (5)

Using the Dirac equation (/p1 −me)u1

= (−/p3γ
ν + 2pν)u1 (6)

The denominator can also be simplified

q′2 −m2
e = p21 − p23 − 2(p1 · p3)−m2

e = −2(p1 · p3) (7)

Where I have used the fact that p21 = m2
e, p

2
3 = 0.

The matrix element becomes

Mt =
e2

(2π)32(p1 · p3)
√

4p02p
0
3

[ū4/ϵ2(2p
ν
1 − /p3γ

ν)ϵ∗3νu1] (8)

=
e2

(2π)32(p1 · p3)
√

4p02p
0
3

[ū4ϵ2µ(γ
µ2pν1 − γµ

/p3γ
ν)ϵ∗3νu1] (9)

For the s-channel diagram we have,

−2πiδ4(p3 + p4 − p2 − p1)Ms =∫
ϵ∗µ(p3, σ3)

(2π)3/2
√

2p03

[
ū(p4, σ4)

(2π)3/2
(−ie)γµ 1

(2π)4
i(/q +me)

q2 −m2
e + iε

(−ie)γν u(p1, σ1)

(2π)3/2

]
ϵν(p2, σ2)

(2π)3/2
√

2p02
× (2π)4δ4(p1 + p2 − q(2π)4δ4(q − p3 − p4)d

4q
(10)

Again switching up notation,

=
−ie2

(2π)2(q′′2 −m2
e)
√

4p02p
0
3

[ū4 /ϵ3
∗(/q

′′ +me)/ϵ2u1]δ
4(p4 + p3 − p2 − p1) (11)
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1 COMPTON SCATTERING 1.2 Matrix Elements

Where q′′ ≡ p1 + p2. Thus,

Ms =
−e2

(2π)3(q′′2 −m2
e)
√
4p02p

0
3

[ū4 /ϵ3
∗(/q

′′ +me)/ϵ2u1] (12)

This can be simplified as well

(/p2γ
ν + γσγνp1σ +meγ

µ)u1 = /p2γ
νu1 + [(2gσνp1σ − γν

/p1) +meγ
ν ]u1 (13)

= (2pν + /p2γ
ν)u1 (14)

Ms =
−e2

(2π)32(p1 · p2)
√

4p02p
0
3

[ū4ϵ3
∗
µ(2γ

µpν + γµ
/p2γ

ν)ϵ2νu1] (15)

The total amplitude is then given by

Mtot = Mt +Ms (16)

The squared amplitude

|Mtot|2 = |Mt|2 + |Ms|2 +MtM∗
s +MsM∗

t (17)

=
e4

(2π)62p02p
0
3

[
1

t2
[ū4 /ϵ2(/q

′ +me)/ϵ
∗
3u1][ū4 /ϵ2(/q

′ +me)/ϵ
∗
3u1]

∗

+
1

s2
[ū4 /ϵ3

∗(/q
′′ +me)/ϵ2u1][ū4 /ϵ3

∗(/q
′′ +me)/ϵ2u1]

∗

+
1

ts
[ū4 /ϵ2(/q

′ +me)/ϵ
∗
3u1][ū4 /ϵ3

∗(/q
′′ +me)/ϵ2u1]

∗

+
1

ts
[ū4 /ϵ3

∗(/q
′′ +me)/ϵ2u1][ū4 /ϵ2(/q

′ +me)/ϵ
∗
3u1]

∗
]

(18)

We have a bunch of factors of the form

[ūa /ϵb(/q +me)/ϵ
∗
cud]

∗ = [u†
aγ

0(ϵb)νγ
νqµγ

µ(ϵc)
∗
ργ

ρud]
† +me[u

†
aγ

0(ϵb)νγ
ν(ϵc)

∗
ργ

ρud]
† (19)

= [u†
d(γ

ρ)†(ϵc)ρ(γ
µ)†qµ(γ

ν)†(ϵb)
∗
ν(γ

0)†ua] +me[u
†
d(γ

ρ)†(ϵc)ρ(γ
ν)†(ϵb)

∗
ν(γ

0)†ua] (20)

= [u†
dγ

0γργ0(ϵc)ργ
0γµγ0qµγ

0γνγ0(ϵb)
∗
νγ

0ua]+me[u
†
dγ

0γργ0(ϵc)ργ
0γνγ0(ϵb)

∗
νγ

0ua] (21)

= [ūd/ϵc/q/ϵ
∗
bua] +me[ūd/ϵc/ϵ

∗
bua] = [ūd/ϵc(/q +me)/ϵ

∗
bua] (22)
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1 COMPTON SCATTERING 1.2 Matrix Elements

Where I have used the following facts: (γ0)† = γ0, (γµ)† = γ0γµγ0, and the fact that
qµ and ϵµ are just numbers (real and complex, respectively). Defining Q′ ≡ /q′ +me,
Q′′ ≡ /q′′ +me and focusing on the terms within the brakets of Eq.(18)

1

t2
[ū4 /ϵ2Q

′/ϵ∗3u1][ū1/ϵ3Q
′/ϵ∗2u4] +

1

s2
[ū4 /ϵ3Q

′′/ϵ∗2u1][ū1/ϵ2Q
′′/ϵ∗3u4]

+
1

ts

[
[ū4 /ϵ2Q

′/ϵ∗3u1][ū1/ϵ
∗
2Q

′′/ϵ3u4] + [ū4 /ϵ3Q
′′/ϵ∗2u1][ū1/ϵ

∗
3Q

′/ϵ2u4]
] (23)

=
1

(p1 · p3)2
[ū4ϵ2µ(γ

µ2pν1 − γµ
/p3γ

ν)ϵ∗3νu1][ū1ϵ3η(2p
η
1γ

λ − γη
/p3γ

λ)ϵ∗2λu4]

1

(p1 · p2)2
[ū4ϵ3

∗
µ(2γ

µpν1 + γµ
/p2γ

ν)ϵ2νu1][ū1ϵ
∗
2η(2p

η
1γ

λ + γη
/p2γ

λ)ϵ3λu4]

+
1

(p1 · p3)(p1 · p2)

[
[ū4ϵ2µ(γ

µ2pν1 − γµ
/p3γ

ν)ϵ∗3νu1][ū1ϵ
∗
2ν(2γ

µpν1 + γν
/p2γ

µ)ϵ3µu4]

+ [ū4ϵ3
∗
µ(2γ

µpν1 + γµ
/p2γ

ν)ϵ2νu1][ū1ϵ3ν(2p
ν
1γ

µ − γν
/p3γ

µ)ϵ∗2µu4]

]
(24)

Now comes the job of averaging and summing over spins, we have terms of the two
forms:

1

2

∑
σ1=±1/2

1

2

∑
σa=±1

∑
σb=±1

∑
σ4=±1/2

[ū4/ϵaQ/ϵ∗bu1][ū1/ϵbQ̃/ϵ∗au4] (25)

=
1

4

∑
σ4=±1/2

∑
σa,σ=±1

[ū4/ϵaQ/ϵ∗b(/p1 +me)/ϵbQ̃/ϵ∗au4] (26)

=
1

4

∑
σ4=±1/2

∑
σa,σb=±1

[ū4γ
µQγν(/p1 +me)γ

ρQ̃γηu4](ϵb)ρ(ϵb)
∗
ν(ϵa)µ(ϵa)

∗
η (27)

=
1

4

∑
σ4=±1/2

[ū4γ
µQγν(/p1 +me)γ

ρQ̃γηu4]gρνgµη (28)

=
1

4

∑
ij

[γµQγν(/p1 +me)γνQ̃γµ]ij
∑

σ4=±1/2

[ū4u4]ji (29)

=
1

4

∑
j

[γµQγν(/p1 +me)γνQ̃γµ(/p4 +me)]jj (30)

=
1

4
Tr[γµ(/q +me)γ

ν(/p1 +me)γν(/̃q +me)γµ(/p4 +me)] (31)
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1 COMPTON SCATTERING 1.2 Matrix Elements

Let’s see what comes out when we look at the spin sum and average of Eq.(24). For
the first and second term we have the form

1

4

∑
σ4=±1/2

∑
σ2,σ3=±1

[ū4(γ
µ2pν1∓γµ

/p3/2γ
ν)(/p1+me)(2p

η
1γ

λ∓γη
/p3/2γ

λ)u4](ϵ2)µ(ϵ2)
∗
λ(ϵ3)η(ϵ3)

∗
ν

(32)

=
1

4

∑
σ4=±1/2

[ū4(γ
µ2pν1 ∓ γµ

/p3/2γ
ν)(/p1 +me)(2p

η
1γ

λ ∓ γη
/p3/2γ

λ)u4]g
µλgην (33)

=
1

4
Tr[(2γµpν1 ∓ γµ

/p3/2γ
ν)(/p1 +me)(2p1νγµ ∓ γν/p3/2γµ)(/p4 +me)] (34)

Expanding the traces explicitly we have

=meTr[γ
µγηqηγ

νγλp1λγνγ
σ q̃σγµ] +meTr[γ

µγηqηγ
νγνγ

σ q̃σγµγ
ρp4ρ]

+meTr[γ
µγνγλp1λγνγ

σ q̃σγµγ
ρp4ρ] +m2

eTr[γ
µγνγλp1λγνγ

σ q̃σγµ]

+m2
eTr[γ

µγνγνγ
σ q̃σγµγ

ρp4ρ] +m2
eTr[γ

µγηqηγ
νγνγ

σ q̃σγµ]

+m3
eTr[γ

µγνγνγ
σ q̃σγµ] + Tr[γµγηqηγ

νγλp1λγνγ
σ q̃σγµγ

ρp4ρ]

+meTr[γ
µγηqηγ

νγλp1λγνγµγ
ρp4ρ] +m2

eTr[γ
µγηqηγ

νγλp1λγνγµ]

+m2
eTr[γ

µγηqηγ
νγνγµγ

ρp4ρ] +m2
eTr[γ

µγνγλp1λγνγµγ
ρp4ρ]

+m3
eTr[γ

µγνγλp1λγνγµ] +m3
eTr[γ

µγνγνγµγ
ρp4ρ]

+m3
eTr[γ

µγηqηγ
νγνγµ] +m4

eTr[γ
µγνγνγµ]

(35)

=meqηp1λq̃σTr[γ
µγηγνγλγνγ

σγµ] +meqη q̃σp4ρTr[γ
µγηγνγνγ

σγµγ
ρ]

+mep1λq̃σp4ρTr[γ
µγνγλγνγ

σγµγ
ρ] +m2

ep1λq̃σTr[γ
µγνγλγνγ

σγµ]

+m2
e q̃σp4ρTr[γ

µγνγνγ
σγµγ

ρ] +m2
eqη q̃σTr[γ

µγηγνγνγ
σγµ]

+m3
e q̃σTr[γ

µγνγνγ
σγµ] + qηp1λq̃σp4ρTr[γ

µγηγνγλγνγ
σγµγ

ρ]

+meqηp1λp4ρTr[γ
µγηγνγλγνγµγ

ρ] +m2
eqηp1λTr[γ

µγηγνγλγνγµ]

+m2
eqηp4ρTr[γ

µγηγνγνγµγ
ρ] +m2

ep1λp4ρTr[γ
µγνγλγνγµγ

ρ]

+m3
ep1λTr[γ

µγνγλγνγµ] +m3
ep4ρTr[γ

µγνγνγµγ
ρ]

+m3
eqηTr[γ

µγηγνγνγµ] +m4
eTr[γ

µγνγνγµ]

(36)

We can simplify first by using the fact that the trace of a product of an odd number
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1 COMPTON SCATTERING 1.2 Matrix Elements

of γ matrices is zero

=m2
ep1λq̃σTr[γ

µγνγλγνγ
σγµ] +m2

e q̃σp4ρTr[γ
µγνγνγ

σγµγ
ρ] +m2

eqη q̃σTr[γ
µγηγνγνγ

σγµ]

+ qηp1λq̃σp4ρTr[γ
µγηγνγλγνγ

σγµγ
ρ] +m2

eqηp1λTr[γ
µγηγνγλγνγµ]

+m2
eqηp4ρTr[γ

µγηγνγνγµγ
ρ] +m2

ep1λp4ρTr[γ
µγνγλγνγµγ

ρ] +m4
eTr[γ

µγνγνγµ]
(37)

Or for the simplified expression for q = p1+ p2, leaving out the odd numbered gamma
matrix products

=4m2
e(p1 · p1)Tr[γµγµ] + 2m2

ep2σp1νTr[γ
µγσγνγµ]

+ 4(p1 · p1)p1λp4ηTr[γµγλγµγ
η] + 2p2σp1λp1νp4ηTr[γ

µγσγνγλγµγ
η]

+ 2m2
ep

ν
1p2ρTr[γ

µγνγ
ργµ] +m2

ep2σp2ρTr[γ
µγσγνγνγ

ργµ]

+ 2pν1p1λp2ρp4ηTr[γ
µγλγνγ

ργµγ
η] + p2σp1λp2ρp4ηTr[γ

µγσγνγλγνγ
ργµγ

η]

(38)

Before we continue on we should note that we will probably want to express our
matrix elements in terms of Lorentz invariant quantities, for 2 → 2 scattering we can
express our result in the Lorentz-invariant Mandelstama variables. We can choose
any frame we’d like to define them, in the CM frame we have

s = (p1 + p2)
2 = 2(p1 · p2) +m2

e

= (p3 + p4)
2 = 2(p3 · p4) +m2

e

(39)

t = (p1 − p3)
2 = −2(p1 · p3) +m2

e

= (p4 − p2)
2 = −2(p4 · p2) +m2

e

(40)

u = (p1 − p4)
2 = −2(p1 · p4) + 2m2

e

= (p3 − p2)
2 = −2(p3 · p2)

(41)

Now we can go term by term, simplifying with our γ-matrix identities

1.

m2
ep1λq̃σTr[γ

µγνγλγνγ
σγµ] = −2m2

ep1λq̃σTr[γ
µγλγσγµ] = −32m2

ep1λq̃σg
λσ (42)

= −32m2
e(p1 · q̃) (43)

Where I have used the identities γνγλγν = −2γλ, γµγλγσγµ = 4gλσ14×4.

For q̃ = p1 − p3

= −32m2
e(p

2
1−(p1 ·p3)) = −32m2

e

(
m2

e −
(
m2

e

2
− t

2

))
= −16m4

e−16m2
et (44)
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1 COMPTON SCATTERING 1.2 Matrix Elements

For q̃ = p1 + p2

= −32m2
e(p

2
1 + p1 · p2) = −32m2

e

(
m2

e +

(
s

2
− m2

e

2

))
= −16m4

e − 16m2
es (45)

2.

m2
e q̃σp4ρTr[γ

µγνγνγ
σγµγ

ρ] = 4m2
e q̃σp4ρTr[γ

µγσγµγ
ρ] = −8m2

e q̃σp4ρTr[γ
σγρ]

(46)
= −32m2

e q̃σp4ρg
σρ = −32m2

e (q̃ · p4) (47)

Using γνγν = 414×4,Tr[γ
σγρ] = 4gσρ

For q̃ = p1 − p3

= −32m2
e((p1·p4)−(p3·p4)) = −32m2

e

(
−u

2
+m2

e −
s

2
+

m2
e

2

)
= 16m2

eu−16m4
e−16m2

es

(48)
For q̃ = p1 + p2

= −32m2
e((p1·p4)+(p2·p4)) = −32m2

e

(
−u

2
+m2

e +
t

2
− m2

e

2

)
= −48m4

e+16m2
et+16m2

eu

(49)

3.
m2

eqη q̃σTr[γ
µγηγνγνγ

σγµ] = 64m2
eqη q̃σg

ησ = 64m2
e(q · q̃) (50)

For q = q̃ = p1 − p3
= 64m2

e(p1 − p3)
2 = 64m2

et (51)

For q = q̃ = p1 + p2
= 64m2

e((p1 + p2)
2) = 64m2

es (52)

4.

qηp1λq̃σp4ρTr[γ
µγηγνγλγνγ

σγµγ
ρ] = −2qηp1λq̃σp4ρTr[γ

µγηγλγσγµγ
ρ] (53)

= 4qηp1λq̃σp4ρTr[γ
σγλγηγρ] = 16qηp1λq̃σp4ρ(g

σλgηρ − gσηgλρ + gσρgλη) (54)

= 16 [(p1 · q̃)(q · p4)− (q · q̃)(p1 · p4) + (q̃ · p4)(p1 · q)] (55)

For q = q̃ this reduces to

= 32(p1 · q)(p4 · q)− 16q2(p1 · p4) (56)
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1 COMPTON SCATTERING 1.2 Matrix Elements

For q = p1 − p3

= 8(p1 · (p1 − p3)p4 · (p1 − p3))− 4(p1 − p3)
2(p1 · p4) (57)

= 8([p21 − (p1 · p3)][(p1 · p4)− (p3 · p4)])− 4t(p1 · p4) (58)

= 8

([
m2

e −
m2

e

2
+

t

2

] [
−u

2
+m2

e −
s

2
+

m2
e

2

])
− 4t

(
−u

2
+m2

e

)
(59)

= 2
(
m2

e(s− t− u) +m4
e + st

)
(60)

For q = p1 + p2

= 8(p1 · (p1 + p2)p4 · (p1 + p2))− 4(p1 + p2)
2(p1 · p4) (61)

= 8([p21 + (p1 · p2)][(p1 · p4) + (p2 · p4)])− 4s(p1 · p4) (62)

= 8

([
m2

e +
s

2
− m2

e

2

] [
−u

2
+m2

e −
t

2
+

m2
e

2

])
− 4s

(
−u

2
+m2

e

)
(63)

= 6m4
e − 2st+ 2m2

e(s− t− u) (64)

5.
m2

eqηp1λTr[γ
µγηγνγλγνγµ] = −2m2

eqηp1λTr[γ
µγηγλγµ] (65)

= −32m2
eqηp1λg

ηλ = −32m2
e(q · p1) (66)

6.

m2
eqηp4ρTr[γ

µγηγνγνγµγ
ρ] = 4m2

eqηp4ρTr[γ
µγηγµγ

ρ] = −8m2
eqηp4ρTr[γ

ηγρ]
(67)

= −32m2
eqηp4ρg

ηρ = −32m2
e(q · p4) (68)

7.

m2
ep1λp4ρTr[γ

µγνγλγνγµγ
ρ] = −2m2

ep1λp4ρTr[γ
µγλγµγ

ρ] = 4m2
ep1λp4ρTr[γ

λγρ]
(69)

= 16m2
ep1λp4ρg

λρ = 16m2
e(p1 · p4) (70)

In terms of Mandelstam variables

= 16m2
e

[
−u

2
+m2

e

]
= −8m2

eu+ 16m4
e (71)
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1 COMPTON SCATTERING 1.2 Matrix Elements

8.
m4

eTr[γ
µγνγνγµ] = 64m4

e (72)

Putting it all together,

Tr[γµ(/q +me)γ
ν(/p1 +me)γν(/̃q +me)γµ(/p4 +me)]

= −32m2
e(p1 · q̃)− 32m2

e (q̃ · p4) + 64m2
e(q · q̃)

+ 4 [(p1 · q̃)(q · p4)− (q · q̃)(p1 · p4) + (q̃ · p4)(p1 · q)]
− 32m2

e(q · p1)− 32m2
e(q · p4) + 16m2

e(p1 · p4) + 64m4
e

(73)

=64m4
e − 32m2

e[(p1 · q̃) + (q̃ · p4) + (q · p1) + (q · p4)] + 64m2
e(q · q̃)

+ 16m2
e(p1 · p4) + 4 [(p1 · q̃)(q · p4)− (q · q̃)(p1 · p4) + (q̃ · p4)(p1 · q)]

(74)

For q = q̃ = p1 − p3

=− 16m4
e − 16m2

et+ 16m2
eu− 48m4

e + 16m2
es+ 64m2

et+ 6m4
e − 2m2

e(u− t+ s)− 2ts

− 16m4
e − 16m2

et+ 16m2
eu− 48m4

e + 16m2
es− 8m2

eu+ 16m4
e + 64m4

e

(75)
= −24m2s+ 24m2t+ 16m2u+ 24m4 + 8st (76)

= 8(m2(−3s+ 3t+ 2u) + 3m4 + st) (77)

The simplified expression i.e. Eq.(38) is determined in the same way

1.
4m2

e(p1 · p1)Tr[γµγµ] = 64m4
e (78)

2.
2m2

ep2σp1νTr[γ
µγσγνγµ] = 32m2

e(p1 · p2) (79)

= 16m2
e(s−m2

e) (80)

3.
4(p1 · p1)p1λp4ηTr[γµγλγµγ

η] = −32(p1 · p1)(p1 · p4) (81)

= 16m2
eu− 32m4

e (82)

4.

2p2σp1λp1νp4ηTr[γ
µγσγνγλγµγ

η] = −16[(p2·p4)(p1·p1)−(p1·p4)(p1·p2)+(p1·p4)(p1·p2)]
(83)

= −16m2
e(p2 · p4) = 8m2

et− 8m4
e (84)

9



1 COMPTON SCATTERING 1.2 Matrix Elements

5.
2m2

ep
ν
1p2ρTr[γ

µγνγ
ργµ] = 32m2

e(p1 · p2) (85)

= 16(m2
es−m4

e) (86)

6.
m2

ep2σp2ρTr[γ
µγσγνγνγ

ργµ] = 64m2
e(p2 · p2) = 0 (87)

7.

2pν1p1λp2ρp4ηTr[γ
µγλγνγ

ργµγ
η] = −16[(p2·p4)(p1·p1)−(p1·p4)(p1·p2)+(p1·p4)(p1·p2)]

(88)
= −16m2

e(p2 · p4) = 8m2
et− 8m4

e (89)

8.

p2σp1λp2ρp4ηTr[γ
µγσγνγλγνγ

ργµγ
η] = 16[(p2·p4)(p1·p2)+(p2·p4)(p1·p2)−(p1·p4)(p2·p2)]

(90)
= 32(p2 · p4)(p1 · p2) = 8m2

es+ 8m2
et− 8m4

e − 8st (91)

Now we can evaluate the first two terms in Eq.(23). For the first term we realize
that we should have set Q = Q̃ above which would have saved us some time, but,
nonetheless we push on setting q = q̃

= 64m4
e−64m2

e[(p1 ·q)+(p4 ·q)−q2]+16m2
e(p1 ·p4)+8(p1 ·q)(p4 ·q)−4q2(p1 ·p4) (92)

In the first term we note that q′ = p1 − p3

1

t2
[ū4 /ϵ2Q

′/ϵ∗3u1][ū1/ϵ3Q
′/ϵ∗2u4]

=
1

4t2

[
64m4

e − 64m2
e[(p1 · (p1 − p3)) + (p4 · (p1 − p3))− (p1 − p3)

2] + 16m2
e(p1 · p4)

+ 8(p1 · (p1 − p3))(p4 · (p1 − p3))− 4(p1 − p3)
2(p1 · p4)

]
(93)

=
1

4t2
[
64m4

e + 16m2
e(p1 · p4)− 64m2

e (p1 − p3) (p3 + p4) + 4(p1 · p4)(p1 − p3)
2
]

(94)

=
1

t2

[
−16m2

√
st+m2t− 2m2u+ 20m4 − tu

2

]
(95)

10



1 COMPTON SCATTERING 1.2 Matrix Elements

For the second terms in Eq.(23) noting q′′ = p1 + p2

1

s2
[ū4 /ϵ3Q

′′/ϵ∗2u1][ū1/ϵ2Q
′′/ϵ∗3u4]

=
1

4s2

[
64m4

e − 64m2
e[(p1 · (p1 + p2)) + (p4 · (p1 + p2))− (p1 + p2)

2] + 16m2
e(p1 · p4)

+ 8(p1 · (p1 + p2))(p4 · (p1 + p2))− 4(p1 + p2)
2(p1 · p4)

]
(96)

=
1

4s2
[
64m4

e + 16m2
e(p1 · p4) + 64m2

e(p1 + p2)(p2 − p4) + 4(p1 · p4)(p1 + p2)
2
]

(97)

= 24m2s+ 8m2t+ 16m2u+ 8m4 + 8st (98)

= 8
(
m2(3s+ t+ 2u) +m4 + st

)
(99)

= 8
(
2m2(2s+ t+ u) +

(
s−m2

) (
t−m2

))
(100)

Thus,

⟨|Ms|2⟩ =
e4

(2π)62p02p
0
3

1

8(p1 · p2)
[8
(
2m2(2s+ t+ u) +

(
s−m2

) (
t−m2

))
] (101)

=
e4

(2π)6p02p
0
3(p1 · p2)

(2m4
e +m2

e(s−m2
e)−

1

2
(s−m2

e)(t−m2
e)) (102)

We can also note that the two amplitudes are related via the transformation p2 → −p3
thus,

⟨|Mt|2⟩ =
−e4

(2π)6p02p
0
3(p1 · p3)

(2m4
e +m2

e(t−m2
e)−

1

2
(s−m2

e)(t−m2
e)) (103)

Now we need to check and see if the cross terms in Eq.(23) yield different results
after we sum and average over spin states. I suspect that it will slightly change the
traces due to the different contractions of the polarization vectors. The terms are of
the form

1

2

∑
σ1=±1/2

1

2

∑
σa=±1

∑
σb=±1

∑
σ4=±1/2

[ū4/ϵaQ/ϵ∗bu1][ū1/ϵ
∗
aQ̃/ϵbu4] (104)

=
1

4

∑
σ4=±1/2

∑
σa,σ=±1

[ū4/ϵaQ/ϵ∗b(/p1 +me)/ϵ
∗
aQ̃/ϵbu4] (105)

11



1 COMPTON SCATTERING 1.2 Matrix Elements

=
1

4

∑
σ4=±1/2

∑
σa,σb=±1

[ū4γ
µQγν(/p1 +me)γ

ρQ̃γηu4](ϵb)η(ϵb)
∗
ν(ϵa)µ(ϵa)

∗
ρ (106)

=
1

4

∑
σ4=±1/2

[ū4γ
µQγν(/p1 +me)γ

ρQ̃γηu4]gηνgµρ (107)

=
1

4

∑
ij

[γµQγν(/p1 +me)γµQ̃γν ]ij
∑

σ4=±1/2

[ū4u4]ji (108)

=
1

4

∑
j

[γµQγν(/p1 +me)γµQ̃γν(/p4 +me)]jj (109)

=
1

4
Tr[γµ(/q +me)γ

ν(/p1 +me)γµ(/̃q +me)γν(/p4 +me)] (110)

Expanding the trace explicitly again

=meTr[γ
µγηqηγ

νγλp1λγµγ
σ q̃σγνm] +meTr[γ

µγηqηγ
νγµγ

σ q̃σγνγ
ρp4ρ]

+meTr[γ
µγνγλp1λγµγ

σ q̃σγνγ
ρp4ρ] +m2

eTr[γ
µγνγλp1λγµγ

σ q̃σγν ]

+m2
eTr[γ

µγνγµγ
σ q̃σγνγ

ρp4ρ] +m2
eTr[γ

µγηqηγ
νγµγ

σ q̃σγν ]

+m3
eTr[γ

µγνγµγ
σ q̃σγν ] + Tr[γµγηqηγ

νγλp1λγµγ
σ q̃σγνγ

ρp4ρ]

+meTr[γ
µγηqηγ

νγλp1λγµγνγ
ρp4ρ] +m2

eTr[γ
µγηqηγ

νγλp1λγµγν ]

+m2
eTr[γ

µγηqηγ
νγµγνγ

ρp4ρ] +meTr[γ
µγνγλp1λγµγνγ

ρp4ρ]

+m3
eTr[γ

µγνγλp1λγµγν ] +m3
eTr[γ

µγνγµγνγ
ρp4ρ]

+m3
eTr[γ

µγηqηγ
νγµγν ] +m4

eTr[γ
µγνγµγν ]

(111)

=meqηp1λq̃σTr[γ
µγηγνγλγµγ

σγν ] +meqη q̃σp4ρTr[γ
µγηγνγµγ

σγνγ
ρ]

+mep1λq̃σp4ρTr[γ
µγνγλγµγ

σγνγ
ρ] +m2

ep1λq̃σTr[γ
µγνγλγµγ

σγν ]

+m2
e q̃σp4ρTr[γ

µγνγµγ
σγνγ

ρ] +m2
eqη q̃σTr[γ

µγηγνγµγ
σγν ]

+m3
e q̃σTr[γ

µγνγµγ
σγν ] + qηp1λq̃σp4ρTr[γ

µγηγνγλγµγ
σγνγ

ρ]

+meqηp1λp4ρTr[γ
µγηγνγλγµγνγ

ρ] +m2
eqηp1λTr[γ

µγηγνγλγµγν ]

+m2
eqηp4ρTr[γ

µγηγνγµγνγ
ρ] +m2

ep1λp4ρTr[γ
µγνγλγµγνγ

ρ]

+m3
ep1λTr[γ

µγνγλγµγν ] +m3
ep4ρTr[γ

µγνγµγνγ
ρ]

+m3
eqηTr[γ

µγηγνγµγν ] +m4
eTr[γ

µγνγµγν ]

(112)
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Now we can evaluate the traces. Once again the terms with a product off an odd
number of γ matrices is zero, we’re left with

=m2
ep1λq̃σTr[γ

µγνγλγµγ
σγν ] +m2

e q̃σp4ρTr[γ
µγνγµγ

σγνγ
ρ] +m2

eqη q̃σTr[γ
µγηγνγµγ

σγν ]

+ qηp1λq̃σp4ρTr[γ
µγηγνγλγµγ

σγνγ
ρ] +m2

eqηp1λTr[γ
µγηγνγλγµγν ]

+m2
eqηp4ρTr[γ

µγηγνγµγνγ
ρ] +m2

ep1λp4ρTr[γ
µγνγλγµγνγ

ρ] +m4
eTr[γ

µγνγµγν ]
(113)

Going term by term

1.
m2

ep1λq̃σTr[γ
µγνγλγµγ

σγν ] = 4m2
ep1λq̃σTr[γ

σγλ] = 16m2
ep1λq̃σg

σλ (114)

= 16m2
e(p1 · q̃) (115)

For q̃ = p1 − p3
= 8m4

e + 8m2
et (116)

For p̃ = p1 + p2
= 8m4

e + 8m2
es (117)

2.

m2
e q̃σp4ρTr[γ

µγνγµγ
σγνγ

ρ] = −2m2
e q̃σp4ρTr[γ

νγσγνγ
ρ] = 4m2

e q̃σp4ρTr[γ
σγρ]
(118)

= 16m2
e q̃σp4ρg

σρ = 16m2
e(q̃ · p4) (119)

For q̃ = p1 − p3
= −8m2

eu+ 8m4
e + 8m2

es (120)

For q̃ = p1 + p2
= −8m2

et− 8m2
eu+ 24m4

e (121)

3.
m2

eqη q̃σTr[γ
µγηγνγµγ

σγν ] = 4m2
eqη q̃σTr[γ

σγη] = 16m2
eqη q̃σg

ση (122)

= 16m2
e(q · q̃) (123)

For q = p1 − p3, q̃ = p1 + p2

= 16m2
e(p

2
1 + (p1 · p2)− (p1 · p3)− p2 · p3) = 8m2

e(s+ t+ u) (124)
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1 COMPTON SCATTERING 1.2 Matrix Elements

4.

qηp1λq̃σp4ρTr[γ
µγηγνγλγµγ

σγνγ
ρ] = −2qηp1λq̃σp4ρTr[γ

λγνγηγσγνγ
ρ] (125)

= −8qηp1λq̃σp4ρg
ησTr[γλγρ] = −32qηp1λq̃σp4ρg

ησgλρ (126)

= −32(q · q̃)(p1 · p4) (127)

For q = p1 − p3, q̃ = p1 + p2

= −8
(
2m2

e − u
)
(s+ t+ u) (128)

5.

m2
eqηp1λTr[γ

µγηγνγλγµγν ] = −2m2
eqηp1λTr[γ

λγνγηγν ] = 4m2
eqηp1λTr[γ

λγη]
(129)

= 16m2
eqηp1λg

λη = 16m2
e(q · p1) (130)

6.
m2

eqηp4ρTr[γ
µγηγνγµγνγ

ρ] = 4m2
eqηp4ρTr[γ

ηγρ] = 16m2
eqηp4ρg

ηρ (131)

= 16m2
e(q · p4) (132)

7.
m2

ep1λp4ρTr[γ
µγνγλγµγνγ

ρ] = 4m2
ep1λp4ρTr[γ

λγρ] (133)

= 16m2
ep1λp4ρg

λρ = 16m2
e(p1 · p4) (134)

= 16m4
e − 8m2

eu (135)

8.
m4

eTr[γ
µγνγµγν ] = −32m4

e (136)

Putting it all together,

1

4
Tr[γµ(/q +me)γ

ν(/p1 +me)γµ(/̃q +me)γν(/p4 +me)]

=
1

4

[
16m2

e(p1 · q̃) + 16m2
e(q̃ · p4) + 16m2

e(q · q̃)

− 32(q · q̃)(p1 · p4) + 16m2
e(q · p1) + 16m2

e(q · p4)

+ 16m2
e(p1 · p4)− 32m4

e

]
(137)
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= −8m4
e+4m2

e[(p1 · q̃)+(q̃ ·p4)+(q · q̃)+(q ·p1)+(q ·p4)+(p1 ·p4)]−8(q · q̃)(p1 ·p4) (138)

Finally we can rewrite the cross-terms in Eq.(23):

1

ts
[ū4 /ϵ2Q

′/ϵ∗3u1][ū1/ϵ
∗
2Q

′′/ϵ3u4]

=
1

ts

[
− 8m4

e + 4m2
e[p1 · (p1 + p2) + (p1 − p3) · (p1 + p2) + (p1 − p3) · p1

+ (p1 − p3) · p4 + p1 · p4]− 8[(p1 − p3) · (p1 + p2)(p1 · p4)]
] (139)

=
1

ts

[
4m2

e

(
3p21 + 2p1 · (p2 − p3 + p4)− p3 · (p2 + p4)

)
− 8m4

e − 8(p1 · p4) (p1 + p2) · (p1 − p3)
]

(140)
= 16m4

e + 16m2
es− 8m2

eu (141)

= −8(4m4
e +m2

e(s−m2
e) +m2

e(t−m2
e)) (142)

Clearly, the last term in Eq.(23) yields the same contribution thus, we can not write
out the full averaged-squared matrix element.

⟨|Mtot|2⟩ =
1

t2
[
16m4

e + 4m2
e(p1 · p4)− 16m2

e (p1 − p3) (p3 + p4) + (p1 · p4)(p1 − p3)
2
]

+
1

s2
[
16m4

e + 4m2
e(p1 · p4) + 16m2

e(p1 + p2)(p2 − p4) + (p1 · p4)(p1 + p2)
2
]

+
2

ts

[
4m2

e

(
3p21 + 2p1 · (p2 − p3 + p4)− p3 · (p2 + p4)

)
− 8m4

e − 8(p1 · p4) (p1 + p2) · (p1 − p3)
]

(143)

⟨|Mtot|2⟩ =
1

t2

[
16p22m

2
e + 16(p1 · p2)m2

e − 12(p1 · p4)m2
e − 16(p2 · p4)m2

e + 16m4
e

+ p21(p1 · p4) + p1p
2
2p4 + 2p21p2p4

]
+

1

s2
[
16m4

e + 4m2
e(p1 · p4) + 16m2

e(p1 + p2)(p2 − p4) + (p1 · p4)(p1 + p2)
2
]

+
2

ts

[
4m2

e

(
3p21 + 2p1 · (p2 − p3 + p4)− p3 · (p2 + p4)

)
− 8m4

e − 8(p1 · p4) (p1 + p2) · (p1 − p3)
]

(144)

= 2e4

[
(p1 · p3)
(p1 · p2)

+
(p1 · p2)
(p1 · p3)

+ 2m2
e

(
1

(p1 · p2)
− 1

(p1 · p3)

)
+m4

e

(
1

p1 · p2
− 1

(p1 · p3)

)2
]

(145)
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1.3 Kinematics

To further simplify we need some kinematics. We align our axes so that the photon
is travelling along the z-axis. In the lab frame we have

p1 = (me, 0, 0, 0), p4 = (E,−p3) (146)

p2 = (ω, 0, 0, ω), p3 = (ω′, ω′ sin θ, 0, ω′ cos θ) (147)

We have the Mandelstam variables

t = (p1 − p3)
2 = p21 + p23 − 2p1 · p3 = m2

e − 2meω
′

= (p4 − p2)
2 = p24 + p22 − 2p4 · p2 = E2 − ω′2 − 2Eω − 2ωω′ cos θ

(148)

(p1 · p3) = − t

2
+

m2
e

2
= meω

′

(p4 · p2) = − t

2
+

E2 − ω′2

2
= Eω + ωω′ cos θ

(149)

s = (p1 + p2)
2 = p21 + p22 + 2p1 · p2 = m2

e + 2meω

= (p3 + p4)
2 = p23 + p24 + 2p3 · p4 = E2 − ω′2 + 2Eω′ + 2ω′2 (150)

(p1 · p2) =
s

2
− m2

e

2
= meω

(p3 · p4) =
s

2
− E2 − ω′2

2
= Eω′ + ω′2

(151)

u = (p1 − p4)
2 = p21 + p24 − 2p1 · p4 = m2

e + E2 − ω′2 − 2meE

= (p3 − p2)
2 = p23 + p22 − 2p3 · p2 = −2ωω′ + 2ωω′ cos θ

(152)

(p1 · p4) = −u

2
+

m2
e

2
+

E2 − ω′2

2
= meE

(p3 · p2) = −u

2
= ωω′(1− cos θ)

(153)

We must also note

m2
e = p24 = (p1 + p2 − p3)

2 = m2
e + 2me(ω − ω′)− 2ωω′(1− cos θ) (154)

Thus,
1

ω′ −
1

ω
=

1

me

(1− cos θ)⇝ ω′ =
ω

1 + ω
me

(q − cos θ)
(155)
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In the lab frame, the phase space integral yields∫
d3p3

(2π)3
1

2ω′
d3p4

(2π)3
1

2E
(2π)4δ4(p3 + p4 − p1 − p2) (156)

=
1

8π

∫
d cos θ

ω′2

ωme

(157)

Thus, the differential cross section is given by

dσ

d cos θ
=

1

2ω

1

2m

1

8π

ω′2

ωme

[
1

4
⟨|M|2⟩

]
(158)

Plugging everything in and simplifying yields the following results

dσ

d cos θ
=

πα2

m2
e

(
ω′

ω

)2 [
ω′

ω
+

ω

ω′ − sin2 θ

]
(159)

also known as the Klein-Nishima formula.
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