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1 COMPTON SCATTERING

1 Compton scattering

Here we compute the differential cross section for Compton scattering (e~y — e~ ) as
a function of the polar angle 6, evaluated in the rest system of the initial-state electron,
between the direction of the incoming photon and the out-going photon.

1.1 Diagrams

Figure 1: [A] Shows the t-channel Feynman diagram and [B] shows the s-channel

Feynman diagram

1.2 Matrix Elements

The scattering amplitude for the t-channel diagram is given by
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Switching to a more concise, but still clear, notation
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1 COMPTON SCATTERING 1.2 Matrix Elements

Where ¢ = p; — p3. Thus,

—e?

M= it — i) gy ] 3

This can be simplified further by noting the following
(P, = Py T me)V ur = =Py ur + (Y7 pr, +7'me)ua (4)

= —p,7 ur + (26" = 7" Ip1, + 7 'me)u = =P,y ur + 2p"u — 7 (P, — me)ur (5)

Using the Dirac equation (p, — me)us

1
= (—py7" + 2" ) (6)
The denominator can also be simplified

q* —m2=pi —p;—2(p1-p3) —m:=—2(p1 - p3) (7)

Where I have used the fact that p? = m?2, p3 = 0.
The matrix element becomes
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For the s-channel diagram we have,
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Again switching up notation,
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1 COMPTON SCATTERING 1.2 Matrix Elements

Where ¢” = p; + po. Thus,
—e?

(2m)3(q" — mg)\/m[@l% (ﬁ + me)¢,u]

This can be simplified as well

M, = (12)

B, + 777 Pre + mey")ur = P,y un + (297 1y —77p) +mey’lun - (13)

= (2" +p,7" ) w (14)

2
—e€
M, = [uges’ (29" p" + P, 7" )€, un] (15)
(27)32(py - pa2)/AP3PS " &

The total amplitude is then given by

Mtot == Mt + MS (16)
The squared amplitude

|Mtot|2 - |Mt|2 + |M5|2 + MtM: + MSM: (17)
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(18)

b (g me) fyullasep(d + )]

We have a bunch of factors of the form
[ﬂaf/b(g + me)?{zud]* = [uzﬁo(Eb)u'VVQMVM(EC);'Vpud]T + Me [UZVO(Eb)V/YV(EC):Vpud]T (19)

= [uf(7") (e (7)1 0 () ()5 (1) 'eta] + me[uf(77) T (e) o ()T (€0)5 (1) ') (20)
= (Ul 77" (ec) 7 ° 77 0777 (€657 ta] + me[ulr* 17  (ec) 1 ° 7 (€6)57 ua) (21)

= [taf ey ua] + meltaf fyua] = [Uaf (4 + me)fyual (22)



1 COMPTON SCATTERING 1.2 Matrix Elements

Where I have used the following facts: (7°)7 = ~%, (v#)T = 7%9#4°, and the fact that
q, and €, are just numbers (real and complex, respectively). Defining Q' = ¢' + m,,
Q" = ¢" + m. and focusing on the terms within the brakets of Eq.(18)

S fyml g @ gy + 5 luagh@” ] i f, Q" ¢y

+ % G166 Q' fun][Ua f5Q" ¢ gua] + [ach Q" ¢ [r £5Q' ¢ yua]] .
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+ [Uaes, (29"PY + 7P, 7" )e2, w] [t €3, (2017 — 77 P,y ) €5, ua]

(24)
Now comes the job of averaging and summing over spins, we have terms of the two

forms:
Y S Y Y bkl el (25)

o1=%1/2  oco=Flop=%104=%+1/2

Yo D [uaf,QF(p, +me)¢,Qfrudl (26)

o4=+1/20q,0=7%1
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_ i %/g[uw“@v”(}iﬁl + M)y QY "G G (28)
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Let’s see what comes out when we look at the spin sum and average of Eq.(24). For
the first and second term we have the form

}1 > Y (@4 (207 F7 Py 7" (P 1) (2P FA P, 7 ual (e2)u(e2) 3 (€3)n e3);

0-4::|:1/2 o2,03=%1
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Expanding the traces explicitly we have
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[
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=Me@nP1rlo TV Y'Y V%Y Y] + Mety@opa, THV Y'Y 70777077
+ Mep13GoPa, TE VY V1 7]+ m2p1ade Te VY Y 0 74
+ m2Gopa, XY 1 107 + M2 0o T " 17 Y
+ MG TV 1 ) + GP1a@oPa, TO VY'Y Y07 707"

+ Me@np1rP1, TE VY'Y V0 7u77] + M2 Ty " Y 7]
+ m2qupa, Tr [V Y'Y 3 7,7] + mEp1apa, Te Y 7 17"

+ mipu ey Y] + mpa, e[y 17,0")

+ m2q T [V "y ) + me Tey Y y,7,)

(36)

We can simplify first by using the fact that the trace of a product of an odd number
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of v matrices is zero
=mepinde Tr Y'Y 7 0y Yl + mEdrpay TV 3979 + Mo Tr(y" Yy 707 ]
+ @123 GoPa, TY VY Y A ]+ M2 TE " Y )
+ m2qupa, TY VY'Y 10 u7] 4 mEpapa, Te VY Y %y’ ] + mETr [V 17,
(37)

Or for the simplified expression for ¢ = p; + ps, leaving out the odd numbered gamma
matrix products
=dmg (p1 - p) T [y ] + 2mgp2,p1, Tr[y"977" ]
+ 4(p1 - PPy TV %" + 2p2,p1ap1,Pay TV Y 7 90
+ 2m2pY Do, Te [V Y, ] + M2 pa,pa, TV 7Y 17 )
+ 20 P1aP2,Pay TE VY VY Y] + P2oP10D2,)P 10 TE YV Y Y Y]

(38)

Before we continue on we should note that we will probably want to express our
matrix elements in terms of Lorentz invariant quantities, for 2 — 2 scattering we can
express our result in the Lorentz-invariant Mandelstama variables. We can choose
any frame we’d like to define them, in the CM frame we have

s = (p1+p2)* =2(p1 - p2) +m;
= (ps + 1) = 2(ps - pa) + ;] (39)
= (m ) = —2(p1 - p3) + mg
= (pa - p2) = —2(pa - p2) +m? (40)
= (p1 —pa)® = —2(p1 - a) + ng
= (p3 — p2)* = —2(ps3 - p2) (41)

Now we can go term by term, simplifying with our y-matrix identities
1.
2 i T [T 7. o __22 i T WAL O __322 ~ Ao 42
MepirGo TEY Y Y 0 6] = =2miepinGe T[] = —32mepindog™ (42)
— —32m2(py - ) (43)
Where I have used the identities 7"y, = =2y} y#9* 7y, = 49 144.

For ¢ = p1 —p3

m?2 t

= —32mz(pf —(p1-p3)) = —32m§ <mz — (76 — 5)) = —16m3— 16m§t (44)
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1 COMPTON SCATTERING 1.2 Matrix Elements

For ¢ = p1 + p2
2/ 2 2 2 S mﬁ 4 2
= —=32m_(pi + p1-p2) = —32m: | m; + 575 )) = —16m; — 16m_s (45)
2.
m2Gopa, Te [V 1 7u7"] = 4m2Gopa, Tr[v*77,7") = —8m2Gspa, Tr[y77)]
(46)
= —32m?2G,p1,9”" = —32m? (G - pa) (47)
Using 7", = 414xq, Tr[y77?] = 4¢°°
For ¢ = p1 — ps3
2
= —32m2((p1-pa)—(p3-ps)) = —32m? (—g +m? — g ﬂ;e) = 16m2u—16m?—16m?s
(48)
For ¢ = p1 + p2
2 2 u 9 1t m? 4 2 2
= —32m2((p1-ps)+(p2-ps)) = —32m; ) +m; + 5 76 = —48m_+16m-t+16m_u
(49)
3.
mzqn(jUTr[fy“fy"fy”%’y"fyﬂ] = 64mgqn(jgg”" = 64m>(q - q) (50)
Forgq=q=pi —ps3
= 64m>(p; — p3)* = 64m>t (51)
For g=q=p1+p2
= 64m2((py + p2)?) = 64m?s (52)
4.

@13 GoPa, TX VY " VA 0] = —200P10GoPa, TX Y'Y 7] (53)

= 4¢,p12Gop1, TV V"] = 16¢,p13Gop1,(97 9" — 979 + g7 ™) (54)
=16[(p1- @)(q-pa) — (q- @)(p1 - pa) + (G- pa)(p1 - 9)] (55)
For ¢ = ¢ this reduces to

=32(p1 - ¢)(pa - q) — 16¢°(p1 - pa) (56)
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1 COMPTON SCATTERING 1.2 Matrix Elements

For ¢ = p1 — p3

=8(p1- (p1 — p3)pa - (p1 — p3)) — 4(p1 — p3)*(p1 - pa) (57)
= 8([p? — (p1 - p3)][(p1 - pa) — (p3 - pa)]) — 4t(py - pa) (58)
2 2
o mg 1 U 9 S mg ( U 2)
— _ R _Z (==
<[me 5 +2H 2—|—m6 2+ 2D 2+me (59)
=2 (m2(s —t —u) + m; + st) (60)
For ¢ = p1 + p2
=8(p1 - (p1 + p2)pa - (p1 +p2)) — 4(;1 +p2)2(p1 - P4) (61)
= 8([p] + (p1 - p2)][(p1 - pa) + (P2 - p1)]) — 45(p1 - pa) (62)
S m2 U t m2 U
S P L A SR 1 R (—— 2) 63
({me—l—Z 2}{2+me 2+21) s{—3+me (63)
= 6m§ — 2st + ng(s —t—u) (64)
5
m2qup TV Y'Y V] = —2megup Tr[v ", (65)
= —=32m2q,p1,9™ = —32mZ(q - p1) (66)
6.
m2qpa, Te VY'Y 1 ,77) = 4m2apa, Te [V "17,7°) = —8m?qypa, Tr[y"7"]
(67)
= —32m2q,pa,g" = —32m2(q - ps) (68)
é
mEp1pa, Ty 7 7,07] = =2meprapa, Te[y' 7 ,0°] = 4m2piypa, Tr[y ]
(69)
= 16m?2p1\pa, g™ = 16mZ(p1 - pa) (70)
In terms of Mandelstam variables
= 16m2 [—g + mg} = —8m2u + 16m* (71)
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me e[y 7] = 64mg (72)
Putting it all together,

Te[y" (¢ + me)y" (P, + me) v (d + me)vu(p, +me)]
= —=32m2(p1 - G) — 32m (G - pa) + 64mZ(q - §)

41 D)a-po) — (@ D1 p2)+ @ p)pr - 0] (73)
— 32mg(q “p1) — 32m3(q “pg) + 16mz(p1 “pg) + 64m3
6t = 3202l )+ @)+ o)+ (ol S0 )

+16mZ(p1 - pa) + 411 @) (q - pa) — (- Q) (p1 - pa) + (G- pa)(p1 - )]

For g =q¢=p1 —ps
= — 16m? — 16m2t + 16m>u — 48m? + 16m?2s + 64m?*t + 6m?: — 2m2(u —t + s) — 2ts

€

— 16m2 — 16m?t + 16m2u — 48m;; + 16m2s — 8m2u + 16m; + 64m

e

(75)
= —24m?s + 24m*t + 16m>u + 24m* + 8st (76)
= 8(m?*(—3s + 3t + 2u) + 3m* + st) (77)
The simplified expression i.e. Eq.(38) is determined in the same way
1.
4m?(py - p1) Tr[y"y,] = 64m, (78)
2.
2mZpa,pr, Tr[y177 Y] = 32m (1 - ps) (79)
= 16m2(s — m?2) (80)
3.
Ap1 - p1)p1apay Tr [ Y 7,7" = —=32(p1 - p1) (p1 - pa) (81)
= 16m2u — 32m} (82)
4.
2D2P1APL P4, TV Y77 77" = =16[(p2-pa) (pr-p1) — (p1-P4) (Pr-p2) +(P1-pa) (P1-p2))]
(83)
= —16m?(ps - ps) = 8m>t — 8m (84)
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5.
2m2pypa, Tr[y"' 1y y] = 32m2 (py - p2) (85)
= 16(m2s —m}) (86)
6.
m2pag 2, TrVY7 7 1,7 ) = 64m?(ps - p2) = 0 (87)
7.
29} p1ap2,Pay Tr VY 0 ") = —16](p2-pa) (pr-p1) — (P1-pa) (1-P2)+(p1-pa) (p1-p2))]
= —16m?(ps - ps) = 8m*t — 8m ESS;
8.
pzap1,\P2pp477Tr[V“VUVVVAVVVPWVW] = 16((p2-pa) (P1-P2)+(P2-P4) (P1-P2) — (P1-P4) (P2-P2)]
= 32(pa - pa)(p1 - p2) = 8m?Zs + 8m?t — 8m? — 8st Eg%

Now we can evaluate the first two terms in Eq.(23). For the first term we realize
that we should have set () = () above which would have saved us some time, but,
nonetheless we push on setting ¢ = ¢

= 64m;; — 64m2[(p1-q)+ (pa-q) — ¢°] +16m2 (pr - pa) +8(p1-¢) (pa-q) —4¢*(p1-pa) (92)

In the first term we note that ¢’ = p; — ps
1 — * — *
15—2[”49562%3“1”“1?—13@/%“4]
1
= [647”2‘ = 64mZ[(pr - (p1 = p3)) + (pa - (1 = p3)) = (p1 — ps)*] + 16mZ(p1 - pa)

+8(p1 - (p1 — p3))(pa - (p1 — p3)) — 4(p1 — p3)* (1 'P4)}

(93)
1
=12 [64"13 + 16m2(p1 - pa) — 64m? (p1 — ps) (p3 + pa) + 4(p1 - pa)(p1r — p3)*] (94)
1 t
=3 {—16m2\/§ + m?t — 2mPu + 20m* — g] (95)
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For the second terms in Eq.(23) noting ¢” = p; + po

Q" g Q@
= L {64m? — 64m2((p1 - (11 + p2) + 0 - (91 4+ p2)) — (91 + p2)?] + 16m2(p:1 - pa)

452

+8(p1 - (p1 +p2))(pa - (p1 + p2)) — 4(p1 + p2)*(p1 - )

(96)
= é [64m;; + 16mZ(p1 - pa) + 64mZ(p1 + p2)(p2 — pa) + 4(p1 - pa)(p1 + p2)?]  (97)
= 24m?s + 8m?*t + 16m*u + 8m* + 8st (98)
=8 (m*(3s +t + 2u) + m* + st) (99)
=8 (2m*(2s +t+u) + (s —m?) (t —m?)) (100)

Thus,
M) = —& L s (2m22s+t4+u)+ (s —m?) (t—m2))]  (100)

(2m)52p9p8 8(p1 - p2)

et 4 2 _m2_18_m2 _m2
= GRRe py me HmE(s —md) — (s —m)e—md) (102

We can also note that the two amplitudes are related via the transformation p, — —ps
thus,

—et

(27)6])827% (pl : p3)

([ M]?) = (2me +mZ(t —mg) — %(8 —m)(t—mg)) (103

€ [&

Now we need to check and see if the cross terms in Eq.(23) yield different results
after we sum and average over spin states. I suspect that it will slightly change the
traces due to the different contractions of the polarization vectors. The terms are of

the form
% 2 %Z YooY [, QfyullungQf udl (104)

o1==%1/2  oca=Flop=%104=%1/2

1 XX h 0k, mfiQu (105)

o4=%1/20q,0==1
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:i Z Z [mw@vv%+me)yp(hnuél](eb)n(eb)z(ea)u(ea); (106)

o4==+1/2 04,0p==1
1

=1 D [ QY (p, + me)y Q") gagy, (107)
o4=%1/2
= iZ[y“ny”(pl +me) 1@l Y [Taualy (108)
ij oy=%1/2
— i Z[’y“@’y”(pl + me) 1 Qe (P, + me)l; (109)
= TR+ Mo (B, + me+ mon(p, +me) (110)

Expanding the trace explicitly again

=m TV 4y Y 1avuY o yom] + me Te VY 4y 1,77 oy P )
+ m T Y Y Py Qo VoY a,) + mETr VY Y D1y Go )
+ m2 T [V Y Y, Gou " Pa,) + mETe [ Y gy 1y G
+ m Ty 3,77 Gov] + Ty 4y 7 D131 G0y P 1)
+ mTr[Vy gy 7 D1y Yu 1y pa,) + mETE VY gy 7 D1y
+ 2T (VY7 Y1y Pa,) + me T Y Y a1y pa,)
+ Ty Y piavute] + mETe Y 7,777 pa )
+ mE Ty gy Y] + meTe [y 9 v.%)

=meGnD1xGo TY VY'Y VY W] + Men@opa, TV "V 77 107"
+ Mep13GoPa, TY VY Y 0]+ m2pade Te VY 799 W)
+ 12 Gopa, Te [V Y % 1 "] 4 M2 0o TV Y'Y 5,0 )

+ G Te VY 1Y W] + @np1aGoPa, TH VY'Y Y9 107"

+ Me@np1aDa, TV Y'Y Y Yu77°] + M Te Y9 Y )
+ m2qupa, Te " 1u07°] + mZp1apa, Te [V )

+ mEp TV Y Y Y] + mEpa, Te vy 1,177

+ mlagy Te vy " ] + mi ey 1)

(112)
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1.2 Matrix Elements

Now we can evaluate the traces. Once again the terms with a product off an odd
number of v matrices is zero, we're left with

=mepurGo Te V'Y 97 0) A+ MG pa, Tr VY 1771 ?) + MG Go TV 0y 0]
+ @12 GoPa, TY VY " M 0] + Ml Te "7 v )

+ 2 ypa, TEV Y'Y 7] + m2p1apa, Te VY Y 777 + mE Ty Y 5,7

Going term by term

1.

m2p1,Go TV Y Y] = 4mPpiadoTr[y 7Y = 16m?pi1,G,97°
= 16m>(p1 - q)

For ¢ =p1 — ps
= 8m? + 8m’t

For p = p1 + p2
= 8m, + 8m’s

m2Gopa, TV Y 5,0 1 ’] = —2mZGopa, Tr[y' Y 17] = 4m2Gopa, Tr[y 77

= 16m2Gopa, g™ = 16mZ(q - ps)

For ¢ = p1 —ps
= —8mZu + 8my + 8m’s

For ¢ = p1 +p»
= —8m’t — 8m’u + 24m}

m2qnGo Te VY'Y 7,7 ] = 4m2qnGo T[] = 16m2g,Grg°"
= 16mZ(q - q)
For g =p1 —ps,q =p1 +Dp2

= 16m?2(p} + (p1 - p2) — (p1 - P3) — P2 - p3) = 8mZ(s + 1 +u)

13
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@yP13 0o D1, XYY V71 = =240P10Gopa, TE Y Y'Y 7] (125)
= —8up12GoP1,9" T[] = —324,p12Gopa,9" 9™ (126)
= —32(q- q)(p1 - pa) (127)
For ¢ =p1 —p3, ¢ =p1 + p2

=—8(2m?—u) (s+t+u) (128)

5.

Mg eV Y'Y ] = =2m2qup1y e[y Yy "y, ] = 4megypiy Triy ]

(129)
= 16mlq,p1,9™" = 16m2(q - p1) (130)

6.
m2qnpa, TV Y'Y ”) = Amiaypa, Tr[y"y?] = 16m2qyps,g"" (131)
= 16m2(q - pa) (132)

7.
m2p1\pa, TrY 0 ”] = 4mZpyapa, Tr(y ] (133)
= 16m2p1\p1,g™" = 16m?(p1 - pa) (134)
= 16m? — 8m2u (135)

8.
miTr[y”y”yu%] = —32m? (136)

Putting it all together,
1 4
ZTY['V#(g +me)y (ﬁl + me)vu(d + me)%(% + me)]
1 N i i
=12 [16m§(p1 - q) +16m2(G - ps) + 16m2(q - §)

(137)

—32(q - q)(p1 - pa) + 16m2(q - p1) + 16mZ(q - ps)

+ 16m§(p1 “pg) — 32m3
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= —8mg+4mZ[(p1-@)+(@-pa) + (@) +(@-p1) +(a-pa) +(p1-pa)] = 8(¢-@) (p1-pa) (138)
Finally we can rewrite the cross-terms in Eq.(23):
1 e gk
o (1@ ][t £5Q" ¢ yud]

1
= 8myg +4mZ[py - (p1+ p2) + (01 — p3) - (p1 + p2) + (p1 — p3) - 1 (139)

+ (pr — p3) - pa+p1-pa] = 8[(p1 — p3) - (p1 + p2) (11 -p;;)]}

1

== [4m?2 (3pF + 2p1 - (P2 — P3 + 1) — ps - (P2 +pa)) — 8mit — 8(p1 - pa) (p1 + p2) - (p1 — p3)]
(140)
= 16m! + 16m2s — 8m2u (141)
= —8(4m; + mZ(s —mZ) + mZ(t — m2)) (142)

Clearly, the last term in Eq.(23) yields the same contribution thus, we can not write
out the full averaged-squared matrix element.

1
(Mot |y = 2 [167”3 + 4m?(p1 - pa) — 16m? (p1 — p3) (p3s + pa) + (p1 - pa)(p1 — p3)2]
1
+ [16m; + 4m?2(p1 - pa) 4+ 16m2(p1 + p2)(p2 — pa) + (p1 - pa)(p1 + p2)?]

2
t5 [4m2 (3p] + 2p1 - (p2 — 3 + pa) — p3 - (p2 + pa)) — 8mg — 8(p1 - pa) (p1 + p2) - (p1 — p3)]
1 (143)
<’Mtot’2> = 2 {16}737”5 + 16(ps 'p2)mg —12(p -p4)m§ — 16(p> ~p4)m3 + 167’”?

+ pi(p1 - p1) + P1papa + 210?192294]

1
+ [16m; + 4m?2(p1 - pa) 4+ 16m2(p1 + p2)(p2 — pa) + (p1 - pa)(p1 + p2)?]

2
+ s [4m§ (3]9% +2p1 - (p2 — p3 +pa) — p3 - (P2 +p4)) — 8mg — 8(p1 - pa) (p1+ p2) - (p1 — p3)}
(144)

— 94 (p1-p3) | (p1-p2) 2 1 o 11 2
=2 [(pl'p2)+ (pl‘ps) 2 e((]?l'lh) (Pl'p3)) * e<p1'p2 (pl‘p3)>
(145)
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1.3 Kinematics

To further simplify we need some kinematics. We align our axes so that the photon

is travelling along the z-axis. In the lab frame we have

P1 = <m€707070)7 P4 = (Ea _p3>
p2 = (w,0,0,w), p3 = (W,w'sinf,0,w’ cosb)
We have the Mandelstam variables

t=(p1—ps)> =pi+p3—2p1-ps =m — 2mew
=(ps—p2)?=pi+p3—2ps-po=E* —w? —2Fw — 2ww' cos b

o N

(p1-ps) =—=+ = mew

SNE

_w/2
+T = Fw + ww' cosd

s = (p1+p2)* =P + 15+ 2p1 - p2 = mZ + 2mew
= (p3 4 pa)? = P2+ P2 + 2p3 - py = E* — W + 20 + 22

(p4 ‘pz) = —

N &+ DN o+

s mZ
(pl'pZ)—§—7—mew
S E2_w/2
(p3~p4):§— 5 = EW + w"?
u=(p —ps)’> =pi+p;—2p1-ps=m’+E* —u?—2m.E
= (p3 —p2)° = pg +p§ — 2p3 - Py = —2ww’ + 2ww' cos
uw om? E?—u?
. - _— _€ — eE
(p1 - pa) 2+ 5 + 5 m
U
(p3 - p2) = —5 = ww'(1 — cosB)

We must also note

m2 =p; = (p1 +p2—p3)*> = m> + 2m.(w — ') — 2w’ (1 — cos )

Thus,
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In the lab frame, the phase space integral yields

d*ps 1 d’psy 1
/ (27?)33 20’ (27r)t E<2W)454(p3 Fpi—pi—p2)

12

1
= — [ dcosbt
8w WM,

Thus, the differential cross section is given by

do 1 1 1 w? 1
v

Plugging everything in and simplifying yields the following results

do o2 (W [ LY an?e
= — — + — —sin
dcosf m2 \ w w W

€

also known as the Klein-Nishima formula.
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