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1 2-body phase space

We want to prove the result that the outgoing 2-particle Lorentz invariant phase space is
equal to the following

dLips(s;P ′
1, P

′
2) =

pdΩ

16π2
√
s

(1)

This so-called Lorentz invariant phase space is important when we are interested in calcu-
lating cross-sections or decay rates for two body collisions at relativistic speeds (like that of
a particle collider). The phase space governs the potential trajectories of a system and tells
us something about the density of states, ultimately it tells us which states can be reached
by the system.

First we need to define the kinematics of the problem. We imagine two particles speeding
towards each other and colliding. We define the following outgoing 4-momentum

P ′
1 = (E′,p′

1)

P ′
2 = (E′,p′

2)
(2)

P ≡ (P ′
1 + P ′

2) (3)

P 2 = (P ′
1 + P ′

2)
2 ≡ s (4)

In the center-of-mass frame we have

p′
1 = p = −p′

2

s = (E1 + E2)
2

(5)

p ≡ |p′| (6)

ECM ≡
√
s (7)

Thus,
s = (P ′

1 + P ′
2)

2 = m2
1 +m2

2 + 2P1 · P2 (8)

P1 · P2 = E1E2 − p1 · p2 = E1E2 + p2 (9)

Plugging back into (7)
s = m2

1 +m2
2 + 2(E1E2 + p2) (10)

(s−m2
1 −m2

2) = 2(E1E2 + p2) (11)

Remembering that E1 =
√
m2

1 + p2 and E2 =
√
m2

2 + p2 we find that the following relation
is true

p
√
s =

1

2

√
λ (12)
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Where λ is

λ(s,m1,m2) ≡ [s− (m1 +m2)
2][s− (m1 −m2)

2]

= m4
1 − 2m2

1m
2
2 +m4

2 − 2m2
1s− 2m2

2s+ s2
(13)

Now that we have all of the necessary kinematic information let’s begin the calculation.
We start with the definition of the infinitesimal Lorentz invariant phase space (dLips) of a
system with center of mass energy s, and momentum P1, P2, ..., Pn

dLips(s;P1, · · · , Pn) = (2π)4δ4(pi − pf )dLips(P1, · · · , Pn) (14)

For two-body phase space we have

dLips(s;P ′
1, P

′
2) = (2π)4δ4(P − P ′

1 + P ′
2)
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Now, we can split up the four dimensional delta function into two delta functions. One
which ensures conservation of momentum and the other which ensures conservation of
energy.

=
1

16π2
δ3(P− p′

1 + p′
2)δ(

√
s− E′

1 + E′
2)
d3p′

1

E′
1

d3p′
2

E′
2

(16)

In the center of mass frame P = 0
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In the center of mass frame we can now integrate over p′
2 in the sense that we are integrating

over an arbitrary function of p′
2∫

δ3(p′
1 + p′

2)f(p
′
1)d

3p′
2 = f(−p′

1) (18)

We just end up with an arbitrary function of p′
1. After substituting (5) we are left with

=
1

16π2
δ(
√
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d3p

E′
1E

′
2

(19)

Currently we are in cartesian coordinates, it will be more convenient to be in spherical
coordinates.

d3p = dpxdpydpz (20)

We can use the determinant of the Jacobian matrix to transform from cartesian coordinates
(x, y, z) to spherical coordinates (r, θ, ϕ)

Jij =
∂fi
∂xj

(21)
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We remember that

x(r, θ, ϕ) = r sin(θ) cos(ϕ)

y(r, θ, ϕ) = r sin(θ) sin(ϕ)

z(r, θ, ϕ) = r cos(θ)

(22)

The Jacobian matrix is the following

Jij =


∂x

∂r

∂x

∂θ

∂x

∂ϕ
∂y

∂r

∂y

∂θ

∂y

∂ϕ
∂z

∂r

∂z

∂θ

∂z

∂ϕ

 =

cos(ϕ) cos(θ) r cos(θ) cos(ϕ) −r sin(ϕ) sin(θ)
sin(θ) sin(ϕ) r cos(θ) sin(ϕ) r cos(ϕ) cos(θ)

cos(θ) −r sin(θ) 0

 (23)

The determinant of this matrix will tell us the appropriate factor of “stretching” or rotating
which the transformation causes locally. The determinant of the above matrix is equal to
r2 sin(θ). A volume element in spherical coordinates will take the form of

dV = r2 sin(θ)drdθdϕ (24)

For a volume element in phase space we say

dVps = |p|2 sin(θ)d|p|dθdϕ = p2dpdΩ (25)

Where sin(θ)dθdϕ = dΩ is the differential solid angle. Plugging this result into (20)

=
1

16π2
δ(
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2)
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E′
1E

′
2

(26)

We can rewrite the differential momentum in the following way

E = E′
1 + E′

2 =
√
m2

1 + p2 +
√
m2

2 + p2 (27)

dE

dp
=

p√
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1 + p2
+
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m2

2 + p2
=

p
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1
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p
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2

=
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1 + E′
2)
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dp =
E′

1E
′
2dE

pE
(29)

Plugging back into (27) we get

=
1

16π2
δ(
√
s− E)

pdEdΩ

E
(30)

After integrating over E as we did in (19) we are left with the expected result

dLips(s;P ′
1, P

′
2) =

1

16π2

pdΩ

E
(31)
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