HOLOGRAPHIC DICTIONARY

Created: February 15, 2022
Last modified: May 18, 2023

Tony Menzo



1 STRING THEORY NECESSITIES

1 String theory necessities

In the study of two-dimensional objects propagating in d dimensional space there are
two important string classes to investigate: open and closed strings.

1.1 Open strings

The bosonic world-sheet action for a two-dimensional object (string) propagat-
ing in a d-dimensional space is given by: Insert bosonic string action from holo-
graphic_TC.tex

Varying the action we obtain the following equations of motion and boundary condi-
tions:

ODp X" = 0 (1)

0,X - 0X

—9,-0X| =0 2)

o=0

o=/

The boundary condition admits two solutions...

To get rid of tachyonic states m < 0 we classify states based on there ‘GSO-projection’
and only keep those states which satisfy ...

1.2 Type II theories

Here we focus on closed superstring theories. As shown above we have four sectors
which we must perform GSO projections. By analyzing the massless part of the
spectrum of states we find that NS-NS sector of type IIB theories admit the following
bosonic massless spectrum (those states which satisfy the massless GSO projection
condition): a graviton h,, a two-form gauge potential B(), and a scalar field ®.

1.3 String theory — Gauge theory

The gauge/gravity correspondence stems from the duality between open and closed
strings. The low energy dynamics of massless open strings on a Dp-brane gives rise
to a (p+ 1)-dimensional SUSY gauge theory while a Dp-brane in the closed string
perspective is described as a classical solution of the low-energy supergravity equations
of motion charged under the R-R field C,1; (boundary of the conformal field theory
of closed strings). This is the basis of the gauge/gravity correspondence which we will
now clarify. First, we find a background solution to a theory of supergravity. This
includes finding solutions to the metric and any other p-forms which the theory may



2 STRING THEORY

be charged under. Once the solution is obtained we can then plug this solution back
into the original action, expand with a special truncation and obtain information
about the dual gauge theory. In particular, we will be interested in finding the
properties of the dual gauge coupling constant as well as the non-perturbative 6-angle.
The truncation can be viewed as taking the leading order terms in the ¢4, — 0 limit.
First, we split the coordinates into two groups: those parallel and perpendicular to
the world volume.

Consider N D-branes in flat Minkowski space.

2 String theory

We will begin by discussing the motion of p-dimensional objects or p-branes moving
through D-dimensional (d space dimensions + 1 time dimension) spacetime (D > p+1).
We will derive the equations of motion for a few relevant systems.

2.1 Point particle (0-brane)

We'll start with the most familiar system, i.e. a massive relativistic point particle
moving through four-dimensional spacetime. The action must be Lorentz scalar, with
dimension [S] = 0. The simplest choice which satisfies both of these constraints would
be proportional to the proper distance traversed over some path P

S:—m/Pds (3)

where m is some constant with dimensions of mass ([ds] = E™!) naturally associated
with the mass of the point particle and ds is an infinitesimal element of the proper
distance

ds = /g T = di 1_(2_55)2 n
Variation of the action gives
0S=0= —m/é(ds) (5)
To proceed further we can parameterize the path of the particle

ot = x"(7) (6)



2 STRING THEORY 2.1 Point particle (0-brane)

giving
dz# dxv
_ 2
ds \/gW e dr (7)
the variation is then given by
1 dz*\ dx” dz¥ _ (dx¥
§(ds) = =ds™* O dr? y—0 dr?
(ds) 2%° <g“ (dT)dTT+g“ dr (dT)T) (8)
dx*\ dz”
_ g1 axr™ 2
=ds gud ( o ) o dr (9)
d(6x*) dx,,
= —Ed 10
dr  ds (10)
Integrating by parts
dx,,(7)

dS = —moxt(T)

K Tld dxt
The variation of the path coordinates at the endpoints is fixed i.e. dz,(7;) = 0z, () =
0. Thus, the equations of motion are given by

d dz,,
ar (mg) =0 (12)

Of course, we recognize that m(dz,/ds) is a four-momentum p, and write

ds

pu =0 (13)

Note that nowhere in our derivation did we rely on a specific number of dimensions in
which our point-particle propagated through. The above holds for any D-dimensional
space in which Lorentz invariance holds.

Defining dz,,/dr = &, the action can also be written as
Ty
S = / Ldr, L=-mv—i? (14)

oL md,
e TN (15)
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2.2 String (1-branes)

Strings or equivalently 1-branes sweep out a two-dimensional surface called a world-
sheet. The action of the string, just as the action of a point particle was proportional
to its proper length, will be proportional to the area of it’s world-sheet.

S:T/dA (16)

where T' is some constant with [T] = E™2 and termed the tension of the string. The
tension is related to the Regge slope

T = ,
2ma!

o] = M2 (17)
The string length [, and mass M, are defined as

1
ls =Va 7 (18)

Because the string sweeps out a two-dimensional surface and we will require two
parameters (7,0) to fully parameterize the surface. A given point in the parameter
space (7,0) is mapped to a D = d + 1-dimensional point in spacetime via the string
mapping functions X (7,0). Under this parameterization, 7 roughly correpsonds to
time and o is related to the position on the worldsheet. Generally 7 ranges over an
infinite interval and ¢ on a finite interval.

Now we need an expression resembling the area of the world sheet in terms of our
string coordinates. We can achieve this by considering the infinitesimal area drdo.
In spacetime this is a quadrilateral spanned by the two vectors

G oOXH
d dul, =
or T 2 do

no_
duf =

do (19)

Using the equation for the area of a parallelogram and defining

- 0X 0X
X, ==t X ==t 2
K or’ L Oo (20)
we find that the area of the world sheet is given by
A= / deU\/ (XHX/)? — XuX, X1 X! (21)
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Our string action must be proportional to this area and along with the dimensionless
constraint we obtain the Nambu-Goto action

S—_T / _Tf dr /0 o J(X - x02 — (X(x0)2 (22)

By defining the induced metric h,p on the world-sheet

oXH 0X"

haﬁ = g“”@_é‘aa_é“ﬁ (23)

where £* = (7, 0) with «, 5 = 1,2. More explicitly the induced metric can be written
as ) :
(X)?2 X.X'
h={( > 24
<X . X/ (X/)Z ( )

We can now rewrite the Nambu-Goto action as
S = —T/deO‘\/—h, h = det(hap) (25)

which is manifestly reparameterization invariant.

2.3 p-brane

A p-brane will sweep out a (p + 1)-dimensional surface. It’s action, just as we have
seen before, will be proportional to the world-volume swept out by it’s motion

S=-T, / dv (26)

where [T,] = E*? and is related to the ‘tension’ of the brane. We will need p + 1
parameters to fully parameterize the world-volume and choose £* for a = 0, ..., p.

Thus we can write
S=-T, / dPreN/—h (27)
where h is the induced metric (pullback) on the world-volume

OXM X"

hap = 8_5“ (9_£bg’“/

(28)

The action in Eq.(27) is referred to as the Dirac action who wrote it down originally
in the context of membrane dynamics.
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2.4 DBI-action

See Imeroni for action expressions and Tong for pedagogical details.
The world-volume action a Dp-brane is given by, in the string frame, as:

Spp = —Tp/ dp+1€ e‘b\/— det (éab + Eab + 27rl§Fab> +,up/ Z C’q/\eBJrznliF
Mpt1 M

Pl g
(29)
where M, denotes the full Dp-brane world-volume, £%, a = 0, ..., p parameterize
the world-volume directions, T}, is the brane tension, p, is the R-R charge of the
D-brane, éab, Eab, and C,; are the ‘pull-backs’ (induced) of the space-time metric,
two-form gauge potential of the NS-NS sector, and p-form potentials of the R-R sector
onto the world volume of the brane i.e.

A ozt 0x¥

ab — a_é.aa_gbG/,w (30)

and likewise for B and C'. The sum in the second terms is meant to pick up the terms
in the expansion corresponding to (p + 1)-forms, which give a non-vanishing result to
the integral over the world-volume. Equivalently in the Einstein frame we have

Spp = —Tp/ drtie 6(17—3)<I>/4\/_ det (G’ab + Bab + 27rl§Fab> —|—,up/ Z C'quB+2wl§F
Mpt1 Mpy1

(31)
Now we must determine the coefficients 7;, and p, appearing in the world-volume
action in terms of the string quantities g, and l,. To make this specification requires
a comparison between the string vacuum amplitude between two D-branes and the
field-theoretic-equivalent amplitude of the exchange of a graviton, dilaton, and R-R
field between two D-branes. Given the normalization of the world-volume action in
Eq.(31) we find

pp = Tp (32)

VT (2mly)3 7P 1
7, = Y™ _ - (33)
K (2m)Pgsls

and thus we have in the string-frame

Spp = —T) {/ e [6_(1) \/_ det <éab + Bab + 27Tl§Fab> - Z C'q A eBHWZ?F] }
Mpt1 p

(34)

and
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3 Branes and String dualities

The d-brane actions contains two peices, the first being the Dirac-Born-Infeld (DBI)
action

Sppr = —,up/ " xe=?y/—det(P(G + B) — 21a'F) (35)
Wpt1
where the coefficient p1,, is given by
()02
Mo =" (36)

This action describes the interations between two parallel d-branes by the exchange
of NSNS and RR closed strings. The pullback of a generic tensor A, P[A] into the
brane worldvolume, i.e., the induced worldvolume tensor is given by

P[Gl = G + Gi0,¢" + 0,0' Gy + 0,0'0,¢° Gy (37)

This introduces the dependence of the action on the embedding fields ¢*. The second
peice of the effective action describes topological couplings to the RR fields, known
as Chern-Simons (CS) terms. They are given by

SCS:Mp/ P ZCQ
W+1 q

P
where it is assumed that the action only picks up the terms corresponding to (p + 1)-
forms which may be integrated of the worldvolume W, ;. The first factor corresponds
to a formal sum of the spacetime RR ¢-form fields C, pulled back on the brane volume.
The thirds factor is the A-roof polynomial

A 27 F=B2 A A(R) (38)

AR)=1- mmﬂ + - (39)

where R is the curvature 2-form defined by [TM: See sect. B.3 in Uranga, Ibanez
and hence, only relevant in the presence of spacetime curvature.

We now quote the supergravity solution for certain p-brane states in the different
string theories, focusing on the simplest states, carrying charge under a single p-form
field. For any (p+ 1)-form gauge potential, there exists BPS p-brane solutions charged
under it. These charges can be measured by computing the Hg_, flux around a
(8 — p)-sphere surrounding the object in the transverse (9 — p)-dimensional space.

7



3 BRANES AND STRING DUALITIES 3.1 Flux compactification

We denote 2, u =0, ..., p, the (p+ 1)-dimensions along the brane worldvolume, and
™ m=p+1,...,9, the (9 — p) transverse dimensions.

These states describe objects with p spatial dimensions plus time, charged under
the RR (p + 1)-forms. The supergravity solution for N coincident Dp-branes is, for
p=<6

ds® = Z(r) P datde” + Z(r)2dae™da™ (40)
eQ(b = Z(T)(3—p)/2 (41)
7_ —
26)=1+(2)7. where g = @) am O (T2)
T
N
Hsfp = 718—_pd(V01)58—p <43)

where r = 3" |2™|? is the radial coordinate in the transverse space R?7.

3.1 Flux compactification

Upon compactifying a string theory, we may be left with a moduli space of parameters
related to the compact geometry. The moduli are signaled by a vanishing potential and
thus can take an arbitrary value. The existence of the moduli imply massless® scalar
fields within the theory (excitations of perpendicular directions in the moduli space)
which are inconsistent with observation. Thus, consistent compactifications contain
no moduli. This can be accomplished by choosing physical systems where non-trivial
potentials arise and constrain the would-be moduli to values of our choosing. This is
known as modulus stabilization. The goal is to generate potentials which fix the values
of all moduli to give an admissible string background or string vacuum. This led to the
development of flux compactifications in the early 2000s. The general idea is to couple
gravity to a flux which contributes to the potential that otherwise has unsatisfactory
properties (collapsing to zero, expanding to infinity, etc.). In a complete string theory
compactification the potential contains contributions from orientifolds, D-branes, and
fluxes. In Type IIB theories, for example, the NS-NS field B, and the RR field A,
have three-index field strengths that can provide these stabilizing fluxes as integrals
over three-dimensional manifolds (exactly how the magnetic fluxes are integrals of
the two-index F),, over two dimensional manifolds). A typical compactification on a
six-dimensional Calabi-Yau space can have hundreds of independent, non-contractible,
three-dimensional submanifolds, each able to support a flux characterized by an

!The moduli are massless due to the vanishing of the potential



4 ADS/CFT

integer. Thus, these fluxes can generate a potential dependent on hundreds of integers.
A particular choice of integers is an example of a flurz compactification. Work out an
explicit (but simple) example.

4 AdS/CFT

Holography or AdS/CFT correspondence refers to an equivalence between a theory
of gravity on anti-de Sitter (AdS) spacetime and a conformal field theory (CFT) on
the boundary of AdS. Consider a field theory inside a volume V¢ residing in d + 1-
dimensional spacetime. To define the field theory we perform a uniform discretization
over the whole volume, creating a lattice. The only relevant parameter for our
discussion is the size of individual lattice sites, we’ll call this parameter b. The field is
now defined at each lattice site by averaging the value of the field over the volume of
the lattice sites. For example, say our field theory is defined inside a three-dimensional
cube with side lengths B. If we discretize the volume of the cube into smaller cubes,
the total number of lattice sites is simply (B/b)? (the total volume divided by the
volume of a single lattice site). The dynamics of our lattice are determined from a
chosen Hamiltonian, we can consider a general Hamiltonian of the form

H=> Ji(x,p)0'(x) (44)

x,0

where x denotes the location of lattice sites and 7 indicates a sum over the ¢ different
operators define on our lattice. J;(z,b) are the couplings (sources) for the i operators
which in general may depend on the size of the lattice sites b. By varying the lattice
spacing we can determine the flow of the coupling through scale transformations i.e.
the so-called S-function: 5

Bi(Jilz,b), w) = b,
This is not too dissimilar to the effect of increasing the resolution of an image. Take,
for example, a two dimensional photo with some pixel size which we allow to vary.
For large pixels (lattice spacing) the photo is blurry, with no discernible structure.
By increasing the resolution (decreasing the lattice spacing) objects may begin to
appear and increasing further will allow the photo to be seen in all its glory. We could
create operators which are pixel-dependent and tell us the color ‘state’ of the ith
pixel. The coupling or source could be the associated ‘R’-value corresponding to the
RGB coloring scale. As the resolution is increased or decreased these RGB couplings
will change appreciably between the lowest (IR) and highest (UV) resolutions.

(45)



4 ADS/CFT 4.1 Anti-de Sitter space

In QFT, if the coupling is weak, the S-function can be determined via perturbation
theory. However, at strong coupling, AdS/CFT proposes to consider the scale ‘b’ as
another dimension. In this way, the sources J;(x,b) are considered as fields ¢;(z, b)
in a space with one extra dimension whose dynamics are controlled by some action.
Specifically in the AdS/CFT duality the dynamics of the ¢;’s are determined by some
theory of gravity i.e. some metric. Therefore we can consider the holographic duality
as a geometrization of the quantum dynamics encoded by the renormalization group.
The microscopic couplings of the field theory can then be identified with the values
of the bulk fields at the boundary of the extra-dimensional space.

The only problem which remains is to match the degrees of freedom contained by the
QFT and those at the boundary of the AdS space.

4.1 Anti-de Sitter space

Finding the geometry associated with a general QFT is a difficult problem in general.
The problem is much easier if the theory has non-trivial fixed points i.e. zeroes of the
B-function # 0. Once the theory evolves to the fixed point, the coupling no longer
evolves and the theory becomes scale invariant. Let’s consider a QFT in d-dimensions
the most general metric in d 4+ 1-dimensions with Poincare invariance in d-dimensions
is given by

ds® = Q*(2)(dt* — d7* — dz?) (46)

Where €(z) is an arbitrary function of the extra-dimension which will be fixed by the
requirement of conformal symmetry. Under a conformal transformation we have

(t,Z) = A(t, %), z— Az (47)
where A\ is an arbitrary real number. The metric becomes
Q?(2)(dt? — da? — dz?) — Q2(A\2)N?(dt? — di* — d2?) (48)

To remain invariant we require
Qz) = — (49)
z

where L is a constant which we refer to as the AdS radius. The final conformally
invariant metric is thus given by

ds* = L—Z(dt2 — d7* — d2?) (50)

22

10



4 ADS/CFT 4.1 Anti-de Sitter space

The metric, of course, has a singularity at 2 = 0 and thus we will need a regularization
in order to obtain sensible results near the singularity. The AdS metric is a solution
to the equations of motions for a theory of gravity with actions of the type:

1
S = /dxd“\/(—l)d—lg (—2A+ R+ R*+ci+--+) (51)

167TGN

where Gy is the Newton constant, ¢; are constants, g = det(gyn), R is the scalar
curvature (R = RMNgyn), and A is a cosmological constant. If ¢y = c3 = -+ = 0, we
are left with our beloved Einstein-Hilbert action of general relativity. The equations
of motion are given by the Einstein equations: (See Valeria for derivation of Einstein
equations from the above action, I should do this once at the very least)

1
Run — §QMNR = —Agun (52)
Taking the trace
1—d
! 5 R —(a+1)A (53)
d+1
=2—A 4
R 11 (54)
Inserting back into our Einstein equations
2A
Ryn = (ﬁ) 9MN (55)

Given the definition of our conformal metric in Eq.(50) we can also compute the Ricci
curvature tensor directly from its definition i.e.

a a 6] (63
RIW = RHPVP - %Fpﬁ“’ - %FZV +T lwrpap -T pVchw (56)

Where R,,,,” is the Riemann tensor and I' is the Christoffel symbol defined by

1 09,  0g 09,
| R Bp M
w =59 m + oxv  Ox° (57)

Plugging in our conformal metric gives (do this explicitly)

d

RMN = —ﬁgMN (58)

11



4 ADS/CFT 4.2  Matching degrees of freedom

comparing the two calculation we see that

A d oy dd—)

d—1 L? 212 (59)

which is always negative. We now see how the scalar curvature is related to the

AdSg44 radius

dd+1)
12

We see that the AdS radius is related to the amount of curvature our AdS space

exhibits.

R=— (60)

4.2 Matching degrees of freedom

We now know have identified a geometry which could act as our extra-dimensional
boundary which our field theory may live on. The only sacrifice we have made thus
far is the fact that we must deal with conformal field theories — so be it. We are
now tasked with comparing the degrees of freedom on the boundary of our theory of
gravity in d + 1 dimensions with the degrees of freedom of our CFT. If the duality is
to hold, these degrees of freedom should match exactly.

Consider our CFT to be defined in a box of volume V' with some characteristic side
length R, serving as our IR regulator, and some minimal lattice spacing €, serving as
our UV regulator. We define the number of degrees of freedom at each lattice site
as ¢, referred to as the central charge. The total number of degrees of freedom in d
spacetime dimensions is thus given as

R d—1
NQFTd = <?> C (61)

The central charge c is one of the main defining features of a CFT. For an SU(NV)
CFT, the gauge fields are described by N x N matrices transforming in the adjoint
representation of the gauge group. Thus, we can count the degrees of freedom by
considering the number of independent real parameters contained in these matrices.
First, consider an n x n unitary matrix M with the following properties

1.

Mz‘j = M;i for ¢ 7&] (63)

12



4 ADS/CFT 4.2  Matching degrees of freedom

Without any constraints a general n x n complex matrix has 2n? independent real
parameters. The first constraint reduces this number by the number of diagonal
elements i.e. n. The second constraint only allows for two real parameters in the
upper (or lower) diagonal or just one real parameter for each off diagonal element i.e.

n? —n. Thus, the total number of free independent parameters is equal to

2n® —n —n*+n=n (64)

Now consider an N x N special unitary matrix M’ containing one additional prop-
erty

1.
det(M) =1 — Tr(M) =0 (65)

This places a constraint on one of the diagonal elements of M’ leaving us with a
total of N? — 1 degrees of freedom. Thus, for SU(N) CFT’s with large N the central
charge scales as ¢ ~ N2.

For our theory of gravity defined in d + 1 dimensions the degrees of freedom are
characterized by the entropy. The entropy in a given volume for some theory of
gravity is bounded above by the entropy of a black hole which can fit into the volume.
Berkenstein and Hawking’s holographic principle tells us that the entropy of a black
hole is proportional to it’s surface area

S = ——A (66)

BH = o “BH

For our purposes, this tells us that the number of degrees of freedom in our AdSy 4
theory are thus proportional to the area Ay of the z = 0 boundary where our CFT

lives
Ap

4Gy
The ‘surface area’ of our . Because the conformal metric is singular at z = 0 we
evaluate at the UV cutoff boundary i.e. z =€

Ay = /R . A /(—1)1gd(z —€) = (%)2 / At (68)

Nadasa = (67)

Note:

V(=1 1g = /(=1)4 det garw (69)

13



4 ADS/CFT 4.2  Matching degrees of freedom

(L)) 0 0
0 —(L/2? 0
guN = 0 0 (L/2)? , (d=1)x(d-1)  (70)

Thus the only contributing term comes from the multiplication of the diagonal

M 7 21
det gyn = Hgii = (—1)d71 (—) (71)

. z
=0

Ay = (é)d_l / d 'z (72)

The final integral is an integral over the remaining spacetime which is infinite. As we
did for the QFT we regularize the integral by placing the theory in a box of volume

V' and side lengths R.
LR\ 4!
%:(—) (73)

€

Thus,

To get a more direct comparison between the degrees of freedom we introduce the
Planck length [p and the Planck mass Mp for a gravity theory in d+1-dimensions

1
GN — l?:il - W (74)
P

1 /R\EY /4!
Nadsy,, = 1 (?) (E) (75)

For the theories to be dual the degrees of freedom must match on either side,

Gt .

c:%(é)W1 (77)

The classical picture of our theory of gravity defined by the action in Eq.(51) holds
when the coefficient in from L?~1/Gy is large, due to the increasing validity of the

and thus

1.e.

14



5 MALDACENA’S LECTURE

saddle point approximation. Our theory in the AdS,;,; space of radius L is thus
dominated by the classical field configurations of metrics when

N4
(l—) S1=L>1, (78)
P

From Eq.(60) this indicates that curvature R oc 1/L? must be small. This also
indicates from Eq.(77) that a QFT has a classical gravity dual when c is large (large
number of degrees of freedom per volume or large number of species). Directly:

4e>1 (79)
For an SU(N) CFT this requires
A4(N?=1)>1 (80)

In other words, the duality holds when we are in the large N limit of our gauge
theory.

5 Maldacena’s lecture

Should be called quantum field theory/quantum gravity duality. Equality between a
spacetime and a consider quantum gravity on the interior of the space and a gauge
theory or quantum field theory on the boundary of that space. String theory is one
way of quantizing gravity.

String theory <» U(N) gauge theory (81)

This is because the string coupling constant g is proportional to N=2. Due to the
the N—colors i.e. N—gluons which are able to transmit a force the true coupling of a
given gauge theory is ~ gy /N = A i.e. the t’Hooft coupling. Duality is due to two
parameter spaces in which the dynamics are calculable. The warp factor is simply a
gravitational potential which can in general depend on the coordinates of spacetime.
The energy of a particle within this well is given by

E =mw(z) (82)

Classically, we expect the particle to live at the minimum of this potential. Quantum
mechanically we expect the probability density to be localized at the minima as well
with higher order excitation stemming from the higher modes of the wave—function.

15



5 MALDACENA’S LECTURE

Naively, this means that there are an infinite number of particles in this potential
well i.e. an infinite number of Kaluza-Klein modes which may be excited. In the
gravity theory, it turns out, it is possible to do a truncation on the perturbations of
the fields and leave us with a finite number of fields. This comes from the holographic
principle i.e. the entropy of a black hole may be described by its surface area or more
practically, if you were to try and excite very high energy modes you would reach a
point in which you produces a black hole.

3

Nfelas ~ % (83)

N
A massive point particle in the bulk at zy corresponds to an extended object on the
boundary with a size proportional to z.

Why can the warp factor be thought of as a gravitational potential? Probably the
simplest way to see this is to consider a point particle living in a spacetime with the
following spacetime metric:

ds® = w(z)(di 5 + d2?) (84)

S = —m/ds (85)

we have

ds = \Jw(2)(—dt? + di? + dz2) = dt, | w(z) [(%)2 - (%)1 (86)

A simple exercise.

Another nice coordinate system for AdS

ds®> = R? [—dr” cosh p* + dp® + sinh® pd 23] (87)

There is an important caveat with respect to a gravity dual of QCD. One of the basic
assumptions in the gravity dual is that we work in a limit which suppresses (make
very heavy) states with spin > 2. However, in QCD we see resonances which have
spins greater than 2 and these states are not that much heavier than states with spin
less than two. This means that any gravity approximation will not be arbitrarily
perfect in this limit.

16



7 COUPLING

6 DBI Action

The world-volume action a Dp-brane is given by, in the string frame, as:

Spp = —Tp/ dP+1§ efb\/_ det (@ab + Bab + 27rl§Fab> +/va/ Z équB+2ﬂl§F
Mpia Mpt1

q
(88)
where M, denotes the full Dp-brane world-volume, %, a = 0, ..., p parameterize
the world-volume directions, 7, is the brane tension, p, is the R-R charge of the
D-brane, Gy, Bay, and Cyp are the ‘pull-backs’ (induced) of the space-time metric,
two-form gauge potential of the NS-NS sector, and p-form potentials of the R-R sector
onto the world volume of the brane i.e.

A ox* 0x”

ab — a_faa_gwa/

(89)

and likewise for B and C. Equivalently in the Einstein frame we have

SDP = _Tp/ dp+1£ €(p73)¢/4 \/— det <éab + éab + 27Tl§Fab> —i_/sz/v Z éq/\eB+27rlgF
Mpt1 M

p+l ¢

(90)

7 Coupling

The gauge/gravity correspondence stems from the duality between open and closed
strings. The low energy dynamics of massless open strings on a Dp-brane gives rise
to a (p+ 1)-dimensional SUSY gauge theory while a Dp-brane in the closed string
perspective is described as a classical solution of the low-energy supergravity equations
of motion charged under the R-R field C,1; (boundary of the conformal field theory
of closed strings). This is the basis of the gauge/gravity correspondence which we will
now clarify. First, we find a background solution to a theory of supergravity. This
includes finding solutions to the metric and any other p-forms which the theory may
be charged under. Once the solution is obtained we can then plug this solution back
into the original action, expand with a special truncation and obtain information
about the dual gauge theory. In particular, we will be interested in finding the
properties of the dual gauge coupling constant as well as the non-perturbative 6-angle.
The truncation can be viewed as taking the leading order terms in the ¢; — 0 limit.
First, we split the coordinates into two groups: those parallel and perpendicular to
the world volume.
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7 COUPLING 7.1 D(p+ 1)-branes wrapped on two-cycles: An example

Consider N D-branes in flat Minkowski space.

7.1 D(p+ 1)-branes wrapped on two-cycles: An example

Here we derive some relevant formulae which will allow us to directly write down
gauge theoretic quantities in terms of the dual supergravity parameters. First we
recall the DBI action for a D(p + 2)-brane

SDp = —Tp+2 / dp+3€ 67(1) \/— det <éab + éab -+ 27Tl§Fab> (91)
Next, we split the coordinates into two groups: those which parameterize the compact
two-cycle which the branes are wrapped and those which don’t.

1. We define £* for a = 0,...,p which describe the ‘flat’-coordinates. We will
assume that this part of the metric is diagonal and that B,z =0

2. &4 for A = p+ 1,p+ 2 parameterize the two-cycle. We assume Fyp = 0 and
that there may be a non-trivial metric G, and B-field.

The determinant can then be factorized as

det (Gab + By + 27rz§Fab) — det (Gog + 2712 F,5) det (Gap + Bap)  (92)

We are interested in expanding determinants of the form
det(X + AB) (93)
Using Sylvester’s determinant theorem we have
det(X + AB) = det(X)det(1 + BX ' A) (94)

Now we consider B = ¢ where ¢ is a small parameter € R and defining C = X1 A.
We are now interested in expanding a determinant of the form det(1 4 eC'). We have
the following identity

det(exp[eC]) = exp(eTr[C]) (95)

Expanding the exponential on both sides

2

2
det<1+60+%02+--->:1+6Tr0+%(TrC)2—|—--- (96)

18



7 COUPLING 7.1 D(p+ 1)-branes wrapped on two-cycles: An example

Focusing on the left hand side

2
det(1+ec+%02+---):det(1+e(c+§c*2+---)) (97)
Using the fact
det(1 + €C) = 1+ €Tr(C) + O(€) (98)
we have
€2 2 1 o 3
:1+€Tr(0+§c o)+ C+5C 4+ | +0() (99)

1 1
=1+€Tr (C) + € {ETr(Cz) +f (C’ + 502 +- ) } +O(e?) (100)
Comparing powers of € we find

f (C + 302 4. ) _ (TT(CWQ_ () (101)

Back to business, if we consider 27/? as our expansion parameter (i.e. consider the
limit where [, — 0)

(2ni2)?

det(Gop+27I2F,5) = det(Gop) (1 + 272 Te (G F) + (Te(G7HF))? = Te((GTF)?)) + - >

(102)

We note G**F,5 = 0 due to the sum over a symmetric and antisymmetric objects.
The term

Tr(G'FG'F) = Te(FF) = F*¥F,5 = GG F,3F\, (103)

Keeping only the quadratic terms in the expansion we have

2 2\2
~ 1o / g/~ dot Gaﬂ\/ - ”215) Tr((GF)2))+/det(Gap + Bap)

(104)
2 l2 2
~ —TM( ”48) / dPT3¢e™®\/—det GopG*GP F o5 Fyor/det(Gap + Bag) (105)

We note that the brane tension can be related to the string coupling and length
via

_ (106)
7' =
" (@2m)eg 8t
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8 WILSON LOOPS

and thus define

Dy = g = 2(2m)P g0 1
gDp (271_[?)7_1) ( 71—) Gsts ( 07)

and thus
IDpra) = 2(2m)Pgll! (108)

After promoting F' to a non-abelian field strength, which comes with an additional
normalization factor of 1/2, we have:

— ;)2 / A= 0 G (F0) (o) /Aet(Ga + Bap) - (109)

_g%p(27rls

_ 1 2¢ —
= [—g%p(Qﬂ'ls)Q /d e \/det(GAB + Bag)

As it is written above, we see immediately that the gauge coupling constant is given
by

E / Tr(*F/\F)] (110)

1 1

gﬂz(M a g2Dp(27Tls)

i.e. directly related to the volume of the two-cycle which the brane is wrapped.

5 /d2§e‘1>\/— det(G ap + Bag) (111)

8 Wilson Loops

See Maldacena 9803002 for the original prescription and then see Nunez, Piai, and
Rago 0909.0748 for calculational details. Also see Maldacena’s TASI lectures.
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9 QUARK-ANTIQUARK POTENTIAL

t

/
d-brane [
z

Figure 1: Hanging-string world volume

9 Quark-antiquark potential

We consider a QED-charged particle moving along a closed curve C with an action
given by:

Se = 74 A, dat (112)
C

This is equivalent to adding to the path integral the term
e%c = W (C) (113)
The non-abelian analogue is given by

W(C) = TrPexp {z ]g Audx“] (114)

where A, = AT, Tr is the trace over the group indices and P is the path ordering
operator. We note that (WW(C)) can be interpreted as the amplitude for the creation of
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10 WILSON LOOPS

a ¢q pair and annihilation after traveling some distance o |C|. For example, consider
a rectangular loop with side lengths @ and b. In the limit where one side length
becomes large. The key here is that in euclidean signature the time evolution operator
becomes e, such that for a contour where ¢ — oo the only surviving energy state is
that of the vacuum. See

10 Wailson Loops

In a gravity dual, a quark is represented by an open strings ending on a D-brane.
Thus, the path C is represented by the boundary 0% of an open string world-sheet X.
We have

(W(C)) = Zswing (0% = C) (115)

For infinitely massive quarks (non-dynamical), the string length [, — oo pushing the
D-brane to the boundary of AdS at z = 0. In the t’"Hooft limit (N — oo) i.e. when
the string action is dominated by classical field configurations, we have

Zstring(aZ = C) - 6_S(C) (116)
Input more details, this is not exactly pedagogical

Now we are interested in computing the holographic analogue of the ¢ potential. We
consider a rectangular contour for a sting which extends along a single coordinate x
and whose endpoints reside on the boundary of AdS (z = 0). The induced metric in
euclidean signature on the strings worldsheet can be written as

L? L?
ds® = 5 (df + da® + d2*) = 75 [de + (1 + 2°)da’] (117)

where

/
z

I
=&

(118)
The Nambu-Goto action is thus given by

1 LT V14 2?2
Sne = /dtdx\/_: 27roz’/dx = (119)

2o

we now have a typical minimization problem where we can employ the tools developed
for classical Lagrangian mechanics. We need to set about finding the exact shape of the
catenary produced by the hanging string. We have the Euler-Lagrange equation:

d (0L oL
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10 WILSON LOOPS

where ,
LT /14 27
L= Vit (121)
2wl 22
we obtain o(1 .
an 20+2%) (122)
z
multiplying by 2’ and rearranging
Z//ZI Z/
T =9z 123
1+ 22 z (123)

integrating both sides over dx we have

In(v1+272) =In (%) +C (124)

2
ol ® s
z
where B = ¢2¢. Solving for 2/
B
d =ty -1 (126)

If we place our string ends at a distance d apart and place our origin at one of these
ends then z must take a maximal value at d/2 (assuming the string ends reside on the
same d-brane at z; = z3 = zp maybe we can generalize to non-equal heights z; # z5)
and thus 2/(z = d/2) = 0. Defining the maximal value of z as z, = z(x = d/2)

B ==z (127)
thus,
/ Zil
d=ty -1 (128)

Now we can integrate and solve for z(z)

2(z) = / dz ( z—i - 1) (129)

u=—, du=—dz (130)

we make a substitution



10 WILSON LOOPS

1 2
x(z) = z*/ du\/% (131)

given the boundary conditions we can solve for z, as a function of the distance d
between the end points on the d-brane

1 u2
d=z, i duﬁ (132)
which yields .
d= z*%;) (133)
z, = 1.67d (134)

Now that we have parameterized the catenary, we need to compute the “on-shell”
action for the string from which we can extract the ¢q potential. After reinserting
our results into the NG action we have

L2T 22 1
= * | dox— 1
Svo = s / = (135)
Transform coordinates .
[z}
dx = ( i 1) dz (136)
LT

*

2/Z* dz
2ral Joo 22\ 2% — 24

Sna = 2 % (137)

Performing another u-substitution

’r1 ! du
Syna=—— | ———— 138
NG = ) A (138)

This integral is divergent on the interval from 0 to 1, however, we can rewrite the
integral with the lower bound starting away from 0

’rT1 [t du

Sng = —— _— 139
NG ol 2, e/z W1 —ut (139)
and for small € it can be shown that
LT 1 w3/2\/2 2,
NG = ol e 5 + — (140)
ol z, r (zll) €
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10 WILSON LOOPS

The on shell or classical action is just given by ET and thus we have the energy of
the quark-antiquark pair as

a2 1 L2 1
- S = (141)
F(i) od  Tde

The divergent piece corresponds to the quark and antiquark masses (which we have
considered to be infinite). To check this definitively we can compute the action of a
single string string which goes straight from the boundary at z = € to z = 0o at a
fixed value of x. The euclidean metric is given by
L2
—(dt* + d=?) (142)

22

The action is given then by

TL? [*d: TL?1
S| = — = - 143
T 2nal /E 22wl e (143)
for two parallel strings we have
TL*1
S| =2x — - (144)
ol €

matching exactly the divergent term in our expression. The true potential energy
between the two quarks is thus given by

4m2L? 1
L (1) o
I?1
=—-0.11—-= 146
o d (146)

in terms of gauge theory parameters where from Eq.(??) L? = /N2gyma’ or in terms
of the t’Hooft coupling L2 = v/ Ao/ we have

472/ 2 1 1
(1)

Comparatively, the perturbative ¢g potential (for A < 1) is given by

EXSU = 7= (148)



10 WILSON LOOPS 10.1 An even more general treatment

For a more general treatment we assume the same set up with the string residing on
the boundary of AdS and extending in only a single coordinate x. We can however
use the more general ansatz for the metric

ds* = f(2) (dt* + (1 + 2"*)dz?) (149)

The action is thus given by

S =
NG 2ma!

/dmf(z)\/l + 272 (150)
This gives us a Lagrangian of the form

L= T f(2)V1+ 22 (151)

2ma!

The Euler-Lagrange equation gives us a relation between 2z’ as a function of f
1+ 27 = Bf(2)? (152)

where B is an arbitrary constant to be determined from boundary conditions. This
as far as we can get without an explicit expression for f(z) but to continue from here
we would solve for 2/, perform a separation of variables, and integrate to solve for x
as a function of z.

10.1 An even more general treatment

See Nunez, Piai, Rago: Wilson Loops in String Duals of Walking Technicolor
We will consider the generic background given by

ds® = —gudt® + Guodi® + gpodp® + gijd0'd0Y (153)

and assume the functions g, guz, 9,p, and g;; depend only on the radial coordinate p.
In principle the function g;; for the internal coordinates could also depend on other
coordinates, however, in this analysis we choose a configuration for a probe string
that is not excited on the §° directions.

The induced metric on the string world-sheet is given by
d82 = —gttdtQ + gdeJQ + gppdp2 (154)

The action is given by
T
SNG = F = /dl’\/ F? + G2p/2 (155)
T
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10 WILSON LOOPS 10.1 An even more general treatment

where we have defined

F? = GttGzz, G* = Gtt9pp (156)
The resulting equations of motion from the extracted Lagrangian result in the following
differential equation
G 2F FF’
! — = - =0 157
P+ < o F > F =z (157)

Likewise, because the Lagrangian doesn’t depend on x explicitly it must be a conserved
charge. We thus have

oL
'— — L= 158
where C' is an arbitrary constant. We have the relation
F2
——=C (159)
x + G2p/2
F2 F2 _ 02
g U~ (160)

c?G?
This gives a direct relation between = and the functions F'(p) and G(p). The constant
C' can be obtained by considering the turning point as the maximal value of p, as
done above. Defining p, as the maximal value of p i.e. p(x = L/2) = p, we have

C=F, =F(p) (161)

Now we define

F\/F>—F?
Vo (162)

Vip) = ke

and obtain

z(p) — 5

_ " de

where L is he distance between the gg pair. The gq potential is obtained by plugging
our results back into the action, extracting the energy piece, and subtracting the
divergent contribution stemming from infinite mass of the quarks i.e. the string
configuration corresponding to two rods extending from the d-brane to infinity.
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10 WILSON LOOPS 10.2  Effective Theory and Wilson Loops

10.2 Effective Theory and Wilson Loops

Generically, effective theory allows us to describe the low energy or IR dynamics of a
field theory approximately independently of the UV physics. For example, effective
field theory methods provided as a very powerful tool in excluding theories beyond
the Standard Model. In the context of holography, effective field theory methods
have been applied in numerous areas See Solana, Gutiez, Hoyos.

For large values of the ¢q separation L, intuition tells us that the shape of the string
near the AdS boundary at p = 0 should consist of essentially perpendicular strings
to the boundary. These straight segments may be thought of as UV contributions
to the IR physics which are essentially fixed and non-changing up to a value of
the radial coordinate p, where the geometry begins to deform the hanging string
configuration. We may then, be able to write the large distance potential between
the quarks independently of the UV geometry and in terms of the ‘cutoff’ radial
coordinate p,. The UV geometry will then be encoded into coefficients multiplying
the qq potential. By differentiating with respect to our cutoff scale p, we can write
holographic renormalization equations describing how the contributions from the UV
geometry flow to the IR, in other words, these are the holographic S—functions.

See Nunez, Piai, Rago: Wilson Loops in String Duals of Walking Technicolor
We will consider a generic 10-dimensional background metric given by

d82 == —gttdt2 + gmdi'Q + grrdTQ + gl]deldej <164)

and assume the functions g, gzs, grr, and g;; depend only on the radial coordinate
r. In principle the function g;; for the internal coordinates could also depend on
other coordinates, however, in this analysis we won'’t consider probe string excitations
along the compact #° directions. Here r corresponds to the radial coordinate with the
boundary (UV) approached as r — oo and the end of the space (IR) reached at some
critical value ry. Orienting our ¢¢ pair along a single spatial dimension in field theory
space for simplicity gives the following induced metric on the string world-sheet

ds® = —gudt® + guedz® + g..dr. (165)

In the gravity dual (and in the t'Hooft limit), obtaining the potential energy between
the gq pair as a function of separation distance L amounts to solving for the classical
catenary curve associated with a string whose ends are stuck to the boundary separated
at a distance L within the space described by Eq.(165). The Nambu-Goto action for
the string is given by

Sng =

/d:vv F2 + G?r'? (166)

2mal
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10 WILSON LOOPS 10.2  Effective Theory and Wilson Loops

where we have defined ' = dr/dz, T = [ dt and

2 = GutGzx, G2 = GitGrr- (167)

Using either the integrated equations of motion or the conservation of the Hamiltonian
results in the following differential equation [TM: Adapt discussion for multi-warp
setups]
p_ FP(F?—C?)

=g (168)
where (' is an arbitrary constant. The constant C' can be obtained by considering
the boundary conditions in which the two string ends are separated by some distance
L along the field theory coordinate. The string extends into the bulk until hitting its
turning point at a minimal value of the radial coordinate r,. Because we assume a
symmetric space we have r(z = L/2) = r,. This gives

C=F(r,)=F. (169)

After defining

Vi(r) = FyF-F (170)

F.G

the geodesic equation is given by

dr
— ==V 171
o (171)

where the two solutions describe either side of r, (=V for x < L/2, +V for x > L/2).
The separation length L between the string endpoints may now be written as

 dr
L= [ dx=2 — 172
[e=z] 7 a7

The energy of the string configuration is given by the length of the string as seen
from the bulk

© F2dr 1 alge 1F?1

,: = —_— = - _— 2— 2 _——
E /ﬁd:z: 2/“ . QF*L+/T* <F\/F F*+2F*V)dr (173)
:F*L+2/ %/F?-Ffdr. (174)

In general the energy of this class of configurations are divergent and require regular-
izing. The divergent piece corresponds the infinite masses of the ‘quarks’ and can be
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10 WILSON LOOPS 10.2  Effective Theory and Wilson Loops

regularized by adding a counter-term ¢ £, corresponding to the energy of two strings
extending from the boundary at » = oo to the horizon at r = rq i.e.

5E|| = 2/ Gd?“. (175)

0

The regularized energy between the gq pair is thus given by

E_F*L+2/ %/F?-Ffdr—z/ Gdr (176)
Tx T0
= F,L +2K,. (177)

As the separation distance between the string ends increases, the string falls deeper
and deeper into the space. For sufficiently large separation we can introduce a cutoff
parameter at r = p such that z(p) = éx < L. In other words, we introduce a cutoff
scale such that the contribution above the cutoff are those from approximately straight
string segments up to corrections of O(dz). This allows us to factorize the action
into three parts: 1. the UV contribution to the string S~ stemming from the two
approximately straight string segments above the cutoff p and 2. the IR contribution
S< stemming from the non-trivial string configuration below the cutoff.

Sng =S+ 8° (178)

We write S< by expanding in z’ to quadratic order

T oe F? 9 4
5= o / {G+@x’ o )] dr (179)
P

utilizing the conservation of the generalized momentum with respect to z’ we find
G c\ _ -
== 21+ =V 180
T 7 ( + G) (180)

where C' is an arbitrary constant. This leaves us with the on-shell action

e /OO <2G + C*) dr. (181)

2ma’

The first term can be interpreted as a partial contribution to the total quark masses
or rods extending from the horizon while the second term proportional to 2’2 encodes
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10 WILSON LOOPS 10.2  Effective Theory and Wilson Loops

corrections due to the small curvature of the string proportional to dz with respect
to the cutoff i.e. C' encodes z(p). The length on the boundary field theory at the
cutoff p in the radial direction is given by?

L> = Q/d:c = 2/ Vdr = 26x. (182)
P

The IR string action is thus given by

Sir =9 +

/ h (2G + é) dr. (183)

with the length between the string ends expressed as

2ma!

P
L =25z +2 % (184)

and energy given by
PG p . 00 .
E=F.1I —i—/ F\/F2 — F2dr — 2/ Gdr + CL” — 2/ G(1—2V)dr (185)
T 70 P
¥e p 00 L
E:F*L'—i-/ F\/FZ—Ffdr—Z/ Gdr—2/ G(1 -2V —C)dr (186)
Tk 0 P
=Fkr—K (187)

where L' is to be understood as the length between the string ends at the cutoff
p and likewise F, = F(x = L'/2) = F(x = L/2). We see that the IR potential is
equivalent to the new string system hanging from r = p and modified by a constant
term proportional the quark mass contribution plus some corrections proportional to
the slope of the string 2’ between the boundary and cutoff. The g-functions can also
be extracted.

Title for paper: Effective Theory of Wilson Loops in Warped throats

2Note that there is a key importance in which variable we choose to play with. If we write our
Lagrangian in terms of 7’ then, because F' and G depend on r we must use the conservation of the
Hamiltonian i.e. ), ¢;p; — £ = constant where p = 9L/0r’. If we write our Lagraingian in terms of
x’ we can directly use the fact that the generalized momentum 9L/0x’ = constant.
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10.3 Determining bulk geometry from Wilson Loops

[TM: See Hashimoto: Building bulk from Wilson Loops| This is nothing other than
inverting the relations obtained above. Could pose as a very interesting method to
determine if the Wilson loop data from a given gauge theory, say on the lattice, has
a gravity dual.

10.4 Hadronization

Discuss the Lund string model and how the gauge-string duality may be used to
compute dE/dz or the equivalent fragmentation function.

11 Entanglement Entropy

11.1 Determining bulk geometry from entanglement entropy

[TM: See Hashimoto, Watanabe: Bulk reconstruction of metrics inside black holes by
complexity]

12 Relating Wilson Loops and Entanglement En-
tropy

[TM: See Nunez, Sonnenchein, et al.]

13 Peskin-Takeuchi S parameter

See Anguelova 1006.3570 for derivation as well Sonnenschein the original papers from
Peskin and Takeuchi.

As shown above, the Peskin-Takeuchi S-parameters may be written as

S = —an Ly — 1)

i (188)

7>=0
This can be rewritten as a sum over vector and axial-vector resonances as

9, 94
S=dr>_ (m%, — m{ ) (189)

n
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15 COSMOLOGY

To compute this quantity from a holographic perspective amounts to computing the
couplings and masses shown in Eq.(189).

14 O-parameter

15 Cosmology

It is interesting to consider how our four-dimensional world may result from the
description of a traveling three-brane embedded in a ten dimensional string theory.
The resulting cosmology can be obtained by considering the geodesic of the three-brane
through the bulk of a higher dimensional space.

For now, we’ll assume a probe three-brane and will show that the motion in ambi-
ent space induces cosmological expansion or contraction simulating “matter” or a
cosmological constant (inflation). This is known as “mirage cosmology” i.e. where
the cosmological expansion is due to the constraints induced by the bulk background
geometry.

Here we consider a probe D3-brane moving along a geodesic in a general static,
spherically-symmetric background. Because the brane moves along a geodesic, the
induced world-volume becomes a function of time such that the “observers” on the
D3 brane experience a changing (expanding or contracting) universe.

It is interesting to ask — what type of generic background geometry mimics the
expansion we see today in the standard cosmological model? Is there a string
background which already exists that gives the desired properties?

The metric may be parameterized as
ds® = —gu(r)dt* + gua(r)dZ? + gy (r)dr® + gog(r)dS (190)

where we will parameterize the compact coordinates via a spherical metric i.e. d) =
h;;6'07 and the metric components ¢, gus, grr, go are all functions of the radial
coordinate r. The probe D3-brane follows its geodesic governed by the DBI action in
Eq.(34)

Sps = =T} { / di¢ [e—‘P \/ — det (éab + B + 27rngab) =) Gy eémliF] }
My q

(191)
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15 COSMOLOGY

- T, / di¢ e ® \/ — det (Gab + By + 27rngab) —
My

where again

} (192)

R B Ox?
oz* Oz (193)

Gap = g;wa—gaa—gb

we are free to choose the convenient static gauge z* = £* for a = 0,1,2,3. Assuming,
to start, B,y = F, = 0 we have

Goo = —gu + gr” + gGOhijéiéj

(194)
Gij = ggw(;w for Z,] = 1, 2,3
where we have used the static condition # = 0 and defined
or .00
=, 0= 1
TR ot (195)
The Lagrangian density is thus given by
L= —6(1)\/—5729Ij <_gtt + grm? + geghijéiéj) +C (196)

For generality we define
A(r)=—e g,  B(r) == %63,0,, D(r)=—¢*gl,00  (197)

giving

L= —\/—A + Br? 4 Dgijéiéj +C (198)

Both r and 6 are independent of the world-volume coordinates and thus must be
constants along the motion. We have

Zqi’c —L=K (199)

we find L
—A— %Dgwelej(l - 6”)

if the compact coordinates are compactified on an n-sphere, we have g;; = 0 for

L7 ]

+C=K (200)

—A
V—A+ Bi? + D2

+C=K (201)
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15 COSMOLOGY

where it is understood 62 = ¢;;0'0". We also have the generalized momentum

Dg;:09
pi=- 9y — =1L (202)
\/—A + Br? + Dg;;0'0
where L is the total angular momentum
. . DQgijgikg .lékél D262
pip' = g"pip; = L? = ! = (203)

— A+ Bi? + Dg;;0i0i  —A+ B2+ D§?
substituting into Eq.(201) and solving for 62 we find

A%L?

6% = DK O (204)

Plugging this result back in we can then determine the evolution of r

fﬂ:g[wﬁ(k%)} (205)

On the probe 3-brane we have the following induced four-dimensional metric
8 = (—gu + g + 9:;0'07)dt* + g, di” (206)

Plugging in Eq.(197) we obtain

_—2d,.3 2

d3* = —(GK _gg)gf dt? + g0 (207)

Defining the cosmological time (proper time of the 3-brane universe)

6_¢9%2|9tt\
we have
ds* = —dn? + gp.di* (209)

This is the standard form for a flat, expanding universe! By defining the scale factor

as a® = ¢,, we can derive the analogous Friedmann equations:
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16 HOLOGRAPHY AT FINITE TEMREBRAE Riaveling in p'-brane backgrounds

15.1 p-branes traveling in p’-brane backgrounds

15.2 Branes with constant B fields
16 Holography at Finite Temperature

16.1 Transport coefficients
16.2 Dyson-Schwinger Equations

In quantum field theories all physical content is stored in correlation functions.

(6r(00)65(2) - bulan)) = / Dou(a1)d5(x2) - dulwa)e S (210)

The ‘usual’ calculation of n-point correlation functions involves a perturbative expan-
sion powers of an infinitesimal parameter. Of course this procedure fails when we
have to deal with couplings which are no longer < 1. In these cases we need to turn
to non-perturbative methods to calculate correlation functions. One such method
resulting in a non-linear first-order functional differential equation was developed
independently by Dyson and Schwinger. The core entity in these calculations is the
effective action I'[®;]. The effective action is defined as

T[®] = sup (/[—W[J] + @iji}) (211)

J

Where the J;’s denote sources for the fields (operators) ®; and W[J] is the generating
functional of connected correlators. The generating functional is related to the bare
action S[¢] via the path integral

217 = MV — / DlgleSler+:; (212)

All n-point correlation functions can be generated by taking functional derivatives of
the generating functional with respect to the sources.
1 o Z[J]
; , e W) = 213

Where ¢; denotes the quantum fields. At Jg,, the variation of the effective action
must be zero and thus,

5525(1;)) —0= 5Jj(:p) ( / —Wi+ ‘I)iJz) (214)
3
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W J]
— D.5 21
5T (x) ~ i (215)
But,
SWJ] 1 6Z[J]
= = 216
5T~ Zaa,) (216)
Thus the average field ® is given by
D, = (0), = 1 [ Digjoresttvers (217)
Noting that
= — P 21
swin ~ ) @t it | St o9
= —(I)jéji + Jion; + P10 = JZ(ZL‘) (219)

We can now write down a functional differential equation for the effective action
considering Eq.(212)

rie) _ / Dlo exp[ S[o+ @] + 5?5]@] (220)

An exact solution for T'[®] is difficult to obtain but we can perform a vertex expansion
of T'[P]

=3 X [P ) ()220

i1+ip

Where N is the corresponding symmetry factor and I' correspond to the one-
particle irreducible proper vertices. Inserting this back into Eq.(220) and comparing
the coefficients of the field monomials results in an infinite tower of coupled integro-
differential equations for I these are the Dyson-Schwinger equations.

16.3 Wilson Loops at Finite Temperature

16.4 Viscosity

See Edelstein, Portugues Sect. 5.9 as well as Ramallo Intro to AdS/CFT. Following
papers are also relevant 0309213, 0405231, 0011179, and 0209163
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