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The following notes are split into four parts. In the first part I give a brief introduction
to SU(6). In the second part I calculate the baryon octet wave functions in order to
calculate magnetic moments. In the third section I use the Gursey-Radicati mass
formula to calculate the mass splitting between the ¥ and A. In the fourth section I
use SU(6) wave functions to calculate the axial vector form factor from neutron beta
decay. Finally, I end with concluding remarks.

SU(6): An Introduction

SU(3) symmetry ignores all internal degrees of freedom such as quark spin, angular
momentum, etc. An obvious extension to SU(3) is the inclusion of one of these
internal degrees of freedom. As you may guess, this can be done by allowing each
quark to take on one of two values of spin (£1/2) and takes us into a six-dimensional
tensor product space with a flavor index i which runs from 1 to 3 and a spin index
j which runs from 1 to 2. This leads us directly into the special unitary group in 6

dimensions (SU(6)) defined as
SU(6) = {u| complex 6x6 matrices, satisfying ulu = 1gyg, det(u) =1} (1)

SU(6) is a semi-simple compact Lie group of rank 5 with 6 —1 = 35 unique generators
which span the entire space (Appendix: for a rainy day). The two fundamental
representations [6] and [6]

[6] = {Qij} = {QIb q12, 421, 422, 431, Q32} = {UT,U% dT7 d¢7 ST: Si} (2)

6] = {@;} = {@u1. @u2: o1, o2, @31, G2} = {0’ @, d', a4, 57, 5%} (3)
We can form Kronecker products of the fundamental representations and reduce them
furth to reveal the SU(6) multiplets. We can make this more explicit by expressing
the products with the quantum numbers of the subgroup SU(3)xSU(2)CSU(6). We

have )
BlsU(6) -84l SU(3) x SU(2) (4)

BlsU(6) —1342 SU(3) x SU(2) (5)

We obtain the meson multiplets from the direct product
[6] @ [6] = [1] & [35] (6)
Denoting the spin explicitly we find

{3}, %] ® [{3}, %] = {11 00e {1}, e {8}, 1 @ [{8},0] (7)
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Which gives us the expected results of the spin-1 vector mesons and spin-0 psuedoscalar
mesons. We obtain the baryon multiplets by the direct product of 3 fundamental
representations

[6] © [6] ® [6] = [20] & [56] & [70] & [70] (8)

We can further decompose the [56]

56] = [{8}. 5] © {10}, 7] 9

Which we recognize as the baryon octect (N, 3, =, ---) and decuplet of the baryon
resonances (A, X% ---)

You may notice that we find more states than physically observed in the direct
product of the three quark sextets. It is thought that the remaining states in the
[20], [70];, [70], have very high masses and cannot be observed with current collider
energies.

PART I: Magnetic Moments of the Baryon Octet

To simplify calculations we will say that there is no orbital angular momentum
contribution to the wave function (1=0). Thus, we will be dealing with particles in
the ground state whose angular momentum is given completely by their spin. This
makes the calculation of the total magnetic moment much more palatable. All we
need to do is add up the spin contributions from each constituent quark. We make
the educated guess that the total magnetic moment operator will be the sum of the
magnetic moments of each individual quark

= > a(056) (10)

Where i denotes the ith quark and (i) is the spin operator acting on the ith quark.
The magnetic moment of hadrons can be measured experimentally along a particular
direction (Stern-Gerlach Experiment). As normal convention we choose to calculate
the magnetic moment along the z-axis. Thus in calculating the expected value for
the z-component of the magnetic moment for any hadron state |h), we have

(h[ fu|h) = {n] Zuq(i)ﬁz(i> |7) (11)

We see that in order to calculate the expectation value of magnetic moment we will
need to first calculate the wave functions for the baryon octet.

2



Calculating Octet wave functions [1]

Figure 1: The baryon octet [2]

The general procedure for calculating the octet (Fig. 1) wave functions begins by
constructing the highest weight state. In this case we start with the proton state.
Once we have calculated the normalized wave function, we can use the shift operators
(Fig. 2) defined by the groups sub-algebras to maneuver around the octet. There
is a degenerate state at the center of the octet so we will have to consider this case
separately when we arrive.



~ -
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Figure 2: The shift operators which allow us to manuever around the SU(3)CSU(6)
multiplets [1]

We define each baryon state uniquely with quantum numbers of hypercharge (Y),
isospin (T, third component of isospin (73), total spin (J), and the spin projection (.J,).
We know that the baryons are made from a linear superposition of three individual
quarks. Baryon wave functions then take the general form (without spin)?

Yp(r) = Z Ai <Qt1,t},,y1<r1> : Qt2,t§,y2<r2) : QtS,tg,yS(ri%)) (12)

7

Where Qs 7yj(rj) represents a quark with quantum numbers ¢, 3,y at some position
r, (---); indicates the sum over possible quark states given by the selection rules, and

ITt is important to note that each of these quarks is located at a distinct point in spacetime
(r;), this becomes important when we symmeterize the wave function. I eventually drop the (r) for
notational brevity



A; are arbitrary complex numbers. To include spin, we now couple the above baryon
wave function with the spin wave function

@/J Z Ai ( ity ) Qy2 42 42 (1'2) T3 13 3 (I'S)),

® Z Aj (X1 (P1) + Xj2,m2(P2) - Xj3,ms3 (T3))
j

After expanding the product we are left with

- -2 <qt1 Bt (1) © X1 (1) - Gz 22 (02) © o (1)
(13

43 43 3 (r3) ® Xj3,m3 (r3))
k

Where ;& ,,»(r;) represent the spin eignenfunctions. We will refer to the quark states
from table (1).

4i Y T T3 Q
a1 (u) % % % %
g2 (d) % % _% _%
g3 (s) —§ 0 0 —§

Directly from SU(6) construction we know that the quarks each have total spin s = %
and thus spin projection mg = :l:%. We begin by constructing the spin +% proton. A
proton is made from two up quarks and one down quark. To build the wave function
we start by coupling two up quarks together and then coupling the down quark to
the two up quark state. There are two potential uu couplings which leave us with a
J. = +1 spin projection. The state (uu)]=}, = |u 1t u 1) coupled with the the |d |)
as well as |u 1) and |u |) together to form the (uu)]=l, state and then coupled to
the |d 1) state both give spin projection J, = +3. The wave function will have to be
some superposition of these states. 2. Writing it explicitly we have

) 11 (11 \/11 ], 1,1
w 1, ’3’ 1,7, Z] (5757 1’57 57 1 57571 + - 2 :|:2 J w% %,%(1)1/}%,%,%(2)X%,m<1)xl,m'(2>

m,m

2Because we are working in the same SU(3) multiplet the respective SU(3) isoscalar factor is 1



Where (2, 55 1|2, 5, 0) = (t,1 T|t3,t3,T3) are the respectlve Clebsch-Gordon co-
efficients (CGC) for SU,(2) and (3,1,1| £ 3,+1,.) = (5,5, J|j=. 4L, J-) are the
respective CGC’s for SU(2). For J,=0 we have

- 11 11
0= (5 31] ~ 3 3:0) @, W)

2°2 272
11 1 1 (14)
+ (53113 -5:0) w0y, 0, @
With the respective CGC we end up with
uu 1
A o= Gt )+ by ) (15)
For J,=1
11 11
(uw) .
A= (53113 5oL ) sDHC 1 (@) (16)
Giving us the state
wﬁ%,l,l =(lut)|ut)) (17)

Now we couple this with the down quark state. We are left with

11

1 1
Yoy mes sty = P 1) = (1, 2505 2) \ﬁ (1) [ 1) 1)+ 4) [ 1) [ 1))

1
2
# (1505155 (utlat)la )

(18)

—\/g\g(!u Nlud)ld ) +Jul)jut)|dt)) + \/g(]u MNut)|dl))  (19)

- \/g(lu Nlut)ld ) — \/gﬂu Dlud)ldt) +lud)fut)ldt)) — (20)

The normalization of the above wave function is correct however because baryons
have even parity we demand that the wave function be symmetric under interchange
of any two quarks. We are able to symmeterize any arbitrary wave function using the
symmetrization operator S which in and of itself is made up of permutation operators
P. For a three body system

5*123:1+]512_|_ﬁ>13+ﬁ>23+ﬁ13]512+]512]513 (21)



Graphically these operators can be understood

1y 1 2 3

PLy: 2 1 3

P.w: 3 2 1

Pw: 1 3 2
(Ps+P )y 3 2 1 |=—=| 3 1 2
(P, +P )y 2 1 3 |=——| 2 3 1

Figure 3: The permutation operator P;; swaps the i and jth particle positions

Acting on |p 1)

1pt) = 7<2|u¢>|u¢>|d¢> ) lud)|d 1) = ud)fut)|d1)

Palpt) = 7(2|uT> [t 4) = [ud) Ju ) |d 1) = Jut) [ud) |d 1))
Puslpt) = —= @1 ) ot Ju ) = 1d 1) fu by ) = |4 1) ) 1)
Pylpt) = %(2|u¢> [ 1) fut) = [ut) d 1) Jud) = |u b) [d 1) [u 1))
PPz |p 1) = 7 (2[u ) [d ) fut) = Jud) [d ) [ut) = Jut)|d 1) |ud))
PipPylp 1) = (2 [ 4) Ju ) [u ) = [d ) fut) fu by = |d ) u d) |u 1))

SI
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Streamlining notation
A 2
Sz lp ) =N - % (2 lututdy) 4 2 |druuly 4 2 |utdru’) — |uTutdh)
— [utuld"y — |dMutut — |dTut et — jutdtuty — quTuH)

Choosing (p'|p") = 1 then N = \/% leaving us with the final normalized, completely
symmetric proton wave function

1
‘pT> —_ (2 |uTqu¢> 49 |d¢uTuT> 19 |qu¢uT> _ \uTuidw

V18

(22)
— ‘uiquT> — |d¢u¢u¢ — |dTuTu¢> — \uidTuw _ quTu¢)>

Now we need to construct all the other wave functions for the baryon octet. Luckily
we don’t need to repeat the above process, using the raising and lowering operators

(Fig. 1, 2) we can maneuver around the multiplet and construct all other wave
functions.

Many body operator

Before we continue on using the shift operators to manuever around the octet we
need to understand how to manipulate them. Any operator which acts in the space of
many-body functions (like the shift operators) is a many body operator in that

Op =0+ 0+ Os

So, when this operator acts on a multi-body function it only acts on its respective
space coordinate (r;). For example

OBwb(r) = Z )\iOAB (Q1(I'1)Q2<r2)QS(1"3))i

=D A [(Qm (r1))¢2(r2)gs(rs) + q1(r1)(Oag(r) s (rs) + Q1(r1)92(r2)(0393(1‘3))]

i
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Figure 4: Smallest irreducible representation in SU(3)

Next let’s construct the neutron wave function. The neutron is an isodoublet with
the proton so we can us the isospin lowering operator T_(Fig. 2) to obtain its wave
function.

[n®) = N -1 |p") (23)

How does the isospin operator act on a an individual quark state? We see from the
SU(3) irreducible representation (Fig. 4)

T_Ju') = |d") (24)

T_|d"Y =T_|d") =0 (25)
Acting on the proton state we find



nf) = N - \/%_8 {2 (T ut) ) + 2 fu” (T-(2)ul) d) + 2|ul’ (7-(3)d"))
42 ( 2(1)&) utuly + 2] ( L(z)zﬁ) ) + 2 |dhut ( 1(3)uT)>
+2 ( A_(l)uT> drut) + 2 |ut ( A_(2)d¢) uty + 2 utd ( A_(3>uf)>
- |(T_(1)UT) wtdhy — Jut (T_(z)w) ' — |ulut (T_(B)dT>)

- \(T,u)ui) wtdhy — |ub (T,(2)uT) 4" — Jutut (Tl(sw))
- \(T,(l)cﬁ) wbuty — |dt <T,(2)u¢) uy — |dtut (T,(g)ﬁ))
- |(T_<1)cﬁ) utut) — |dt (T_(g)uT) uty — |dTut (T_(s)u¢)>
- |<A_(1)u¢) druly — Jut (T_(z)cﬁ) uty — [utd! (i(g)ﬁ))
. \(T,(l)uT) ATty — |t (T (2)@) uty — [uld! (T(g)ﬁ))]

(26)
After implementing (26) and combing like terms we are left with
N
Int) =—— [ |d™utadY) + |udta") + |dvd ) + |drutdh
V18 (27)

4|t dbuty + Jutdvdty — 2|dhetdhy — 2 [utddT) — 2 \deTuU}

We need to find the normalization constant for the wave function, we demand
that

(n'nt) = / Yip,dV =1 (28)
3

/ YhndV =] / Gy X ity X3 s 4 (29)
3

= H 5ti7t/i5té,téi5yi7y/i mé,m’t (30)

Using this result and plugging in the neutron wave function we find
N2
(n'|n') = —

18(4-3+6):1 (31)
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N =+1 (32)

Choosing N=+1 we are left with the normalized, symmetric, spin up neutron wave
function

1
") =—= | [d'u'd*) + [u'd'd") + |d*d"ut) + |duld")

VIS (33)
+ |d'druty + [utdrd"y — 2 |dTutdy — 2 |utdtd"y — 2 |dd )

We now proceed by constructing the other spin one-half baryon wave functions

By applying the U_ shift operator on the proton state we can obtain the Y+ wave
function. We need to know how the U_ acts on the quark states.

U-|d") = |s")
U-|dY) = |s*)
U_|u’y =U_|u") =0
It can seen that the X7 state is exactly the same as the proton state however the

|d™)) eigenstate is replaced with the [s(™)). With the condition that (XF|%F) =1
we obtain

1
|2 :\/_1_8 (2 lututsY) + 2 |stulul) 4 2 |utstul) — [ulutst)

34
_ |u¢uT37) _ |5Tu¢uT> _ |sTuTu¢> _ |u¢sTuT) _ |uT3Tu¢)> )
Now we construct the [X°T) wavefunction. Noting before that
T |s)=T_|d) =0
T |u) = |d)
We find
20t =7 |2+ :\/il_é%' (2 |d"ulsY) + 2 |utd sY) + 2 |stdTul) + 2 |stutd") + 2 |d stul)

+ 2|utstd) — |dTuts?) — |utdts?) — |dru’sT) — |utd'sT) — |sTdrul)
— ]sTuidw — \sTdTuﬂ — |3Tqu¢> _ ]disTuw _ \uiswa _ |d¢s%¢)

— ’uTSTd¢>
) (35)
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Demanding that (X+T|S1) = 1 we find that N = \/g and thus

1
301 :6' (2 |dTu73¢> +92 |quT3¢) +92 |s¢dTuT> +2 |S¢quT> +92 |de¢uT>

+2|ustdy — |dTutsty — [uldbsT) — |drulsT) — [utdTsT) — |sTdbul)
— [sTutd®y — [sTdTub) — [sTuladb) — |dsTul) — [utsTdl) — |dTsTub)

- ‘uTsTcﬁ))

(36)

Again acting T_ to obtain the wave function for [S~T)

. N
2N =7 %) =5 (2 |d'd"sY) 4+ 2|d"d sY) + 2 |stdtdy + 2 |stdTdty + 2 |d st

+2|d'std"y — |dTdrsTy — |dTdvsTy — |dvd STy — |drdTsT) — |sTavdT)
— |$Td¢dT> — ‘sTde¢> — |sTde¢> — |d¢5TdT> — |d¢5TdT> _ |dTSTdJ’>

_ |aﬁ5Td¢>>

N
=5 (4 |d'd's%) + 4 |stdd) + 4 |dTstdy — 2|dTdbsTY — 2 |dvd T

(37)
—2bwww—QBMMH—QW%M®—2M%MB)

With the normalization condition we find that N = \/Li hence,

1
N = —. (2 |d'd's) + 2|stdd"y + 2 |d sV — |dTdvsTy — |dvdTsT)
V18
(38)
— ‘STdidw — ‘STdel> — ‘diswa _ ‘dTSTd¢>)
Applying U_ to [2~T1) gives the |Z1) state. From figures (2) and (4) we see
U-|d) = |s)

U_|u)y =U_1s) =0 (39)
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=
||
Fj>

™

=
||

N
——2|sTd s + 2 |dTsTs%) + 2 |stsTd) + 2 |stdTsT) + 2 |sTsvdT
/i | )+ 2| ) +2] ) +2] )+ 2| )

+2]d's*s™) — |sTdtsTy — |dTstsT) — |stdTsT) — |dvsTsT)
— |sTstd")y — |sTdtsty — |sTsTdY) — |sTdls%) — |stsTdl)

_ |d¢sT3T) _ |5T5Td¢> _ |deTS¢)]

Combining like terms we are left with
N
= — [ —2|sTsTdY) —2|drsTsT)y — 2 |sTd sty + |sTdTst)
+ |d'sTshy + |stsTdhy + |stdTsT) + |sTstdT) + \deisT)]

We find that N = ++/1 we choose N = —1 in order to make the wave function similar
to the rest leaving us with
1
=N = —. [2 |sTsTd") +2]d*sTsT) + 2 |sTdsT) — |sTdTsY)

V18

(40)
— |d"s"sY) — |stsTdl) — |std'sT) — |sTstdT) — ]d{rsisw]

Similarly we apply 7} |2~1) = |2°T) noting first
Ty |d) = |u)
T+ |U> = T+ |S> =0

Proceeding

. N
=N =7, 2N = — [ 2sTsTut) + 2 |utsTs™ + 2 sTutsT) — [sTulst
=T [T = e 21575 4 2T 4 25Tl - [T

— |uTsTs¢> _ ]s%ﬂﬁ) _ ]siuTsT) _ ]sTsiuT) _ ]uTsisT)

(41)
Choosing N = +1 we have

1
E0Y = ——|2|sTsTut) + 2 |utsTsT) + 2 |sTutsT) — [sTulsh)

— |uTsTs¢> — |s¢sTuT> _ \siuTsw — ‘ST8¢UT> _ |UT8¢8T>}
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Finally we need to construct the iso-singlet state |A°T). We know that the origin in
the Y-T5 plane is degenerate because we do not get the same state from all directions
in the multiplet. For example

T IS =T |T=1,T3=1Y=0)=[T=1,T5=0,Y =0) = [2°  (43)

?

Whereas

. o . 1 1
UV IS =U, V. |T=1T:=1.Y=0=U,|T==Ty=—>-Y =—-1
=|T=0T3=0,Y =0) = |\

PN n N
U VoIt =U,|2°1) = ird 2|d"sTut) + 2|sTd ) + 2 jutd'sT) + 2 |utsTdT)

+ 2 |dMutsTy + 2|sTutd"y — |dTulst) — [sTuldb)
— |quT5¢> _ |uTsTd¢> _ |d¢sTuT) _ |s¢dTuT>
— ]diuTsw — |s¢quT> — \cﬁsifzﬁ) _ ]s%l%ﬁ)

— ]qu¢3T> _ |uT3¢dT>

. - 1
Uy |291) = A = HE |dTsTub) + 2[sTdTut) + 2 [utd'sT) + 2 [utsTd")

+2|dMutsTy + 2|sTutd"y — |dTulst) — |sTuldb)
— [uld'sY) — [ulsTa%) — |a*sTul) — |stdTul) (45)
— |d*utsty — |stuld") — |dTstut) — |sTdbul)

— |qu¢ST> — |uT3¢dT)

We demand that the X% and A° states be linearly independent. Thus we must
orthogonalize the two wave functions. By orthogonalizing wave function (45) with
respect to (36) by the Graham-Schmidt orthogonalization procedure we obtain the
physical |[A)°" state.

Graham-Schmidt Orthogonalization

Given a linearly independent basis we can construct a orthonormal basis by

14



1. Scale one of the linearly independent vectors to unit length. If we let |a)
be one of our linearly independent vectors and [1),|2),---,|n) be our new
orthonormal basis vectors

1) = 12 (46)

2. Subtract from the second vector |b) is projection along the |1)

2') = [b) = [1) (1]b) (47)

3. Renormalize the second basis vector by its own length

_ 2
NS (48)

Now we have two orthonormal vector, this procedure can be continued indefinitely
given sufficient linearly independent vectors

Given that |2°) and |A°M)are linearly independent we can build a orthonormal basis
by following the above process

A7) = N ( AT — [07) (57T ATTY ) (19)
Thus
(STA) = N - (<20T|A°T> (A <20T|20T>) 0

To obtain the wave function we must first calculate (X°T|A%T)

~ 1
(X7 AT =3 [2 (d'"u's%] + 2 (ud st + 2 (stdul| 4 2 (stuld| + 2 (d" st

+ 2 (ustd'| — (dTutst| — (uldrsT| — (d*u'sT| — (utd'sT| — (sTd*u]|
— (sTutd"| — (sTd"ut| — (sTuldt| — (d*sTul| — (utsTd'| — (d'sTu?|

- (uTsTdﬂ} [2 d'sTuty + 2 |sTdTut) + 2 [utd'sT) + 2 [utsTd")

+2|dMutsTy + 2|sTutd"y — |dTulsY) — |sTuldY) — |uld'sY)
— |uTsTd¢> _ |d¢sTuT) _ ]sidTuw _ |d¢uTsT> _ |S¢quT>

— |de¢uT> — |3Td¢uT> _ ]qu¢5T> _ |uTs¢dT>
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—1(2><6 2x6+1x6)= 15
36 36 2
Thus we find

N
|A%T) = 5 {(2 dTsTub) + 2 [sTdTut) + 2 [utd's™y + 2 [utsTdT) + 2 |dTutsT) + 2 [sTutdh)

— |d"u'sY) — [sTulad") — [uld'sY) — [ulsTa") — |drsTul) — |stdTul) — |dru’sT)
— [stuld"y — |d's*ut) — |sTdrut) — [uld*sT) — ]ufsidw)

1
+3 ((2 |d"ulst) + 2 |utd sY) + 2 |stdTul) 4+ 2|stutd") + 2 |dTstul)

+ 2 utstd) — |dTutsty — [uldts?) — |dru’sT) — |utdTsT) — |sTdul)
— [sTutd"y — [sTdTut) — [sTuld?) — |d*sTul) — |utsTdl) — |dTsTub)
- |uTsTd¢> ))}

Combing like terms,

N
=5 [g < |ds™uby + |sTd uby + |utd'sTy + utstd") + |[dTutsT) + [sTutd! >)

3
b ( |sTuld) + |ulsTd) + |d¥sTul) + |du'sT) + [sTd ) + [u'd'sT)

With (A°TAT) =1 we find N = \% thus finally

1
E . [( ]deTuU + \sTdTui) + ]u%ﬁsw 4 \uis%ﬁ) + ]dTu¢3T> 4 \s%ﬁcﬁ))

< |sTuld) + [ulsTd") + |dvsTu') + |d*ulsT) + [sTdrul) + [uTd*sT)

(50)
We now have the entire set of completely symmetric, normalized octet wave func-
tions.

|A%T) =

Remember what we were doing?

Now that we have the wave functions for the ground states of the baryon octet we can
calculate their magnetic moments simply by adding up the spin contributions from
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each individual quark. Let’s remind ourselves of Eqn. (11) describing the magnetic
moment for a hadron

pun = (h| fuh) = (h| Zuq(i)6z(i) ) (51)

Let’s, for example, calculate the magnetic moment of the spin up proton, we have

(p'| fuIp") T\Zuq 0)6(i (52)

1 [( ul TdﬂZM ]uT Td¢)+4<d¢ T T|Zu ()]di T T)

(u'd*u T‘ZM (i) |u’d*uTy — (u! idﬂzu (i) uTutd"
ut TWZM (i) Jutuldty + (dTut T’ZM i)|d bt (53)
+ (d"ut ¢|ZM (i) d uub) icﬁuqzu (i) utd u)

(utdhy ¢|ZM (0)|ud'u ¢>)]
1

=18 (4(2:uu pa) + A(—pra + 2p0) + 4(—pra + 2p0n) + (fow — fta — fiu)
(=t + s + pra) + (pta — pru + o) + (fta + fro = o) + (= pou + pta + p)  (54)
+ (fo + pta — uu))

16 6 1
2 = (4 —

Similarly if we look at the neutron wave function in Eq (33) we immediately see that
the total magnetic moment will be the same with u, and p, interchanged

Hp =

Hn = %(4/%! — ) (56)
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For X% we have

ps = (37 Z pq(1)5(4)[27) (57)

1
T (4(2uu — ) A(—prs + 2p0) + A — s o) F (o — o F fts) F (= o+ fl + fs)

+(M5_Mu+ﬂu>+(MS_’_Mu_Mu)+<_:U’u+,us+p“u)+(uu+/ls_:uu))

1 4 1
= 15 (24Hu = Bps) = Spow — s (59)

For 3° we can see from Eqn. (36)

1
fiso = %(4(% + p = ) A+ g — prs) + A= ps + pa + pa) + 4= ps + pu + pa)

+ 4t — prs + pr) + 4 — pos + pa) + (pa — pu + pos) + (pa — fra + fis)
+ (—pa + o+ ps) + (= + pra + ps) + (pos — pa + po) + (s — o, + 11a)
+ (ks + pa — pu) + (ps + p = pa) + (—pa + s + o) + (= o + s + 1)
+ (pta + ps = pu) + (pu + s = 1))

Combining like-terms

1 2 1
= —(24p1g — 1205 + 24p,) = = w) = o hs 60
5g (24Ha = 1205 + 24410) = S (ua + ) = gp (60)
For the ¥~ we notice immediately from the wave functions (Eqn. (34)) that we can
interchange p,, and pg within ps+ to obtain ps-

4 1

= g — s 61
po- = gha = S (61)

Likewise for u=- we interchange pg — ps and ps — g within ps-

4 1

g — — 62
SHs — Ha (62)

M=- =
Similarly to obtain pu=zo we interchange pg — tt, in p=-

4 1

H=o = SHs — Sh (63)
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For pipo we have

1

o = 75 ((pa gt = o) + (s + pra = ) + (=gt + pta + p15) + (= + s + pa)

+ (Ha = o+ 1) + (s = pro =+ a) + (s + o = fa) + (o + s = pta)
+ (—pa + et ) + (—pa o+ prs) + (s = pa o+ pin) + (i = o+ p1s))

[iA0 = fls (64)
Now that we have our theoretical expressions we can begin to compare with actual
experimental data. We have many expressions relating the magnetic moments of
baryons from the octet uy, to individual magnetic moments of the constituent quarks
lhu, ttg, and ps. Thus, we need to obtain the predicted values of individual quark
moments by comparing with experiment. We can obtain a prediction of u, and g4
by comparing experimental values of y, and p,

Hp _ 3 (4t — 1) (65)

5 (44— p)
If we assume that a quark is a point-like particle like the electron, then its magnetic
moment can be expressed approximately as
e

= o 66
Hq quQ (66)
Where e() is the quark charge, m, is the mass of the quark, and & are the Pauli-spin
matrices. If we ignore mass differences between the quarks then the magnetic moments
are proportional to the individual quark charges. From this we can obtain a relation
between the magnetic moments of the up and down quarks.

Qe 23
=g 1 = _1/3Md = —24q (67)

Plugging this result back into Eq(63)

Hp _ —8pa—pa 3 . (68)

o Apg+2pa 2
Experimentally p, = 2.7928473446 4+ 0.0000000008 and ,, = —1.9130427 £ 0.0000005
thus Z—: = —1.4598980 4 0.00000005. The agreement between theory and experiment
is striking. From experimental values of p, and p, we can calculate the individual

quark moments.
1

4
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1 4
Ha = i+ g = —0.9720 (70)
s = ppo = (—0.613 = 0.004) 110 (71)
e
= 72
Ho 2m, (72)

Using these value we can obtain predictions for the megnetic moments for the rest of
the baryon octet. This is summarized in the table below

Baryon L Prediction [no] Experiment [po]
xt S — S s 2.673 2.458 £ 0.010
S0 2 (g + pa) — 3l 0.791 -
¥ SHd — 5/bs -1.091 -1.160 = 0.025
S s — Fia -0.493 -0.6507 £ 0.0025
=" s — /by -1.435 -1.250 + 0.014

Theory and experiment agree surprisingly well for this rudimentary additive quark
model. The discrepancies above can be attributed to d-wave contributions to the
orbital angular momentum.

PART II: Y — A Mass Difference

If SU(6) symmetry were an exact symmetry of the strong interactions we would
expect all the energies within a given SU(6) multiplet to be degenerate (have the same
mass). We observe from experiment, however, non-degenerate energies for a given
SU(6) multiplet (For example the 56-plet has a mass splitting of order 10%). We can
imagine that this is due to a small symmetry breaking term in the Hamiltonian. From
this realization we construct the Hamiltonian with two parts H, which is invariant
under SU(6) transformations and H, which breaks the SU(6) symmetry. Because the
energy splitting is small we can assume that the mass contributed by H, is small
compared to H,
H = H,+ H,
M = (Ho) + (Hs) , (Ho) > (H,)

From SU(3) we were able to obtain a mass formula by first ignoring the electromagnetic
mass splittings and assuming isospin was a good symmetry (particles in the same
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isoplet have the same mass). This meant that the symmetry breaking Hamiltonian
had to commute with isospin [H,,T5] = 0. The only generator in SU(3) which
commutes with T3 is )\8 = 2F8 \/_ Y thus the simplest assumption is that the
symmetry is broken by hypercharge and we get

H,=bY (73)

Calculating the expectation value of H, on an unperturbed wave function, first order
perturbation theory gives us

M =a+bY (74)

Where a = My when Y = 0 and a and b are constants. This mass formula produces
satisfactory mass relations within the baryon resonances but fails for the baryon octet.
The reason is Yso = Yo which yields the mass relation Mso = Mo when in reality
Mo — Myo &~ T7MeV. To account for this we modify H, by adding T? and Y2 (the
only other operators available operators within SU(3) which commute with T%).

Hy =bY + ¢T? + dY? (75)
Which gives a mass formula of
M=a+bY +cT(T+1)+dY? (76)

Where ¢ and d are constants in an SU(3) multiplet. We have to put constraints on
this mass formula in order to produce constant mass splitting in the decuplet and
after doing so we end up with the Gell-Mann Okubo mass formula

M=a+0bY +c[T(T+1) - iYﬂ (77)

When incorporating SU(6) symmetry we say that the symmetry breaking Hamiltonian
is scalar in spin space i.e. [Hy,J?] = 0 3. Thus, H, « J2 we obtain the following
Giirsey-Radicati mass formula.

M=a+bY +c[T(T+1) - iYﬂ +d[J(J +1)] (78)

Where d is a constant and has the same value in different spin multiplets. Using
experimental mass data I can fit the parameters a, b, ¢, d and then use those
parameters to calculate the masses of X% and A°

1 3
Mny[939MeV] =a+ b+ §c+ Zd

3We use J?2 because it commutes with 75
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1 3
Mz[1315MeV] =a — b+ 3¢ +—d

4
1 15
Mz+[1531 MeV] =a — b+ Jet Zd
From the fit
a = 1059.33 MeV
b= —188 MeV
c = 27.33 MeV
d="72 MeV

For My, and M, we have ;
ME =aqa -+ 20 + Zd

3
MAZG—de

Plugging in the parameters we find
My, = 1168 MeV

My = 1113 MeV

Thus,
My, — My = 55 MeV

Experimentally the mass difference is

My e — My pp = 1192.642 £ 0.024 MeV — 1115.683 4 0.006 MeV

= 76.96 £ 0.02 MeV

(79)

(80)

(81)

(82)

The theory and experiment are of the same order of magnitude. As mentioned by
Radiciati and Giirsey, the mass formula they proposed is not the most general formula.
In the next section I will outline the procedure to obtain mass differences which agree
exactly(ground state) with experiment by using the generalized Giirsey-Radicati mass

formula.
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Generalized Gursey-Radicati mass formula

The mass formula obtained in Eqn. (78) can be rewritten in terms of its Casimir
operators

M = a + bCy[Uy (1)] + ¢|Co[SUL(2)] — ~ (C1[Uy (1)])°] + dCa[SUs(2)]  (83)

1
4
Where C[SU[(2)] and Cy[SUg(2)] are the (quadratic) Casimir operators for isospin
and spin and C,[Uy(1)] is the Casimir operator for the U(1) subgroup generated
by hypercharge (Y). To generalize the above formula we can think of a dynamical
spin-flavor symmetry SUg(6) with subgroups

SUSf(6) D SUf(3> X SUS(Q) D SUI(Q) & Uy<1) & SOS(2> (84)

With quantum numbers (Ay, A2, Az, ..., As), (Af, py), J, I, Y, and J, which define the
irreducible representations of each group. With this we can rewrite the generalized
symmetry breaking mass formula

M =a + bCQ[SUSf(6)] + CCQ[SUf(S)] -+ ng [SUS(Q)] + eCl[Uy(l)]

(e [UY(l)])2 (%)

1
+ [ C2[SUI(2)] - 1
In general an SUg(6) wavefunction can be expressed in more than one way. We
could label the wave function with the quantum numbers given by the group and its
subgroups
|<)\17 )\27 )‘37 )\47 )\5)7 ()‘fa :uf)a J7 ]7 }/7 Jz>

Often the representations are represented by their dimensions
***'dim (SU(3)) ,, [dim (SU(6)), L"], X) (86)

where dim(SU(n)) is the dimension of the representation, S and L are the total spin
and orbital angular momentum, J and P are the spin and parity of the resonance and
X denotes the baryon. For example the nucleon wave function in the ground state
can be denoted as follows

1 1
‘N> - ‘(370707070)7 (27 1)7 57 17 57 Jz>

(87)
= \28%, [56,07], N)

23



Either notation uniquely represents the state. Just as we did before in order to find
the symmetry breaking energy contribution we need the expectation value of Hj on
the eigenfunctions of the invariant Hamiltonian.

(C1 Uy (1))
(88)

First order perturbation expansion yields

<()\1, )\2, )\3, )\4, )\5), ()\f, /Lf), J, [, Y, Jz’f{b|()\1> )\2, )\3, )\4, )\5), ()\f, ,uf), J, I, Y, Jz> (89)

= BCISUO)]) + c{CoISTRB))) + (T +1) + e + f[T(T +1) = 1¥7]  (90)
Where
45/4 for [56]
(Ca[SU(6)]) = ¢ 33/3 for [70]
21/4 for [20]

3 for [§]
(CISUB)]) = 6 for [10]
0 for [1]

Thus leaving us with two mass formulas, one for the light baryons (octet) and another
for the baryon resonance (decuplet)

45 1
M[B]:a+Zb+3c+dJ(J+1)+eY+f[T(T+1)—ZYQ} (91)

45 1
Moy = a+ b+ 6e+dJ(J + 1) +e¥ + f[T(T+1) = 1¥7] (92)

There are two conditions which need to be valid in order to use the generalized Giirsey
Radicati mass formula. The first is that it must be valid to use the same fitting
parameters between different multiplets as seen above. The second condition is that
you must have a reliable way of determining the mean mass of the multiplet (a). This
is accomplished by solving the Schrodinger equation (non-relativistic) and obtaining
reliable eigenfunctions for a given invariant Hamiltonian. The eigenvalues of these
eigenfunctions will give you the values for Mj in a given multiplet. One successful and
popular technique is to solve for eigenfunctions subject to a hypercentral potential.
The three-body quark wave functions obtained make up the hypercentral constiuent
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quark model (hCQM). This model describes baryons as three-quark bound states.
Internal quark motion is defined using Jacobi coordinates

1
7= —(F — T 93
p \/5(1 2) ( )
3 1 — — —
A= —( 1+T2—27’3) (94)

S

With hyperradius
z=/|pl + AP (95)

Consider the invariant three body Hamiltonian

p/Q) P3
Hy=3m+ 22 Po Ly
0=3m o T o (x) (96)

Where m is the quark mass?, and V() is the hypercentral potential

T

V(z) = — +azx (97)

Where 7 and « are fitting parameters. Given this Hamiltonian we can solve the
Schrodinger equation

v2
%@Z)w = (B — V(2))y (98)
Where V? in hyperspherical coordinates is

d 5d v+ 4))
dz? " rdx 22
This model not only makes predictions for particles in the ground state but also
excited states with orbital angular momentum. For example, Giannini et al. [5] fit
the constants given in Eqn. (88) using three and four star resonances to obtain the
symmetry breaking contribution to the baryon masses. These contributions along
with there calculations of the average mass of a given multiplet from the hQCM result
in ground state predictions which are essentially indistinguishable from experiment.
From [5] they calculated ¥ and A masses

VZ=( (99)

ME = 1193 MeV

M Bl = 1116 MeV
M;GZC[B] . M[ialcm =77 MeV (100)

4This particular hCQM neglects the difference in quark masses for simplicity
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Calculating G 4(¢* = 0) [2]
o-
v
= =
neutron decay proton

Figure 5: Weak neutron beta decay [2]

In the case of weak interactions we are interested in calculating the axial vector form
factor G(¢?) at ¢*> = 0. This corresponds to the weak beta decay

n—p+e +0 (101)

This process includes the conversion of d quark inside the neutron to a u quark with
the emission of an electron and an anti-electron neutrino. The charged current which
is responsible for this process

J(d = u) = cos(0e) [, (1 — 5)d] (102)

Where 6, is the Cabibo mixing angle. Ignoring the cos 6. the transition operator for
a single d quark is of the form

Yl = 5) T (103)

Where, as we know from calculating the baryon wave functions, transforms the down
quark into an up quark. Generalizing as a many-body operator we have

3

> A= 4T (104)

=1

In the non-relativistic case the only terms which contribute to the transition are the
spatial components of the axial vector

ga = Mo TV |nt) (105)
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Let’s rewrite the neutron and proton wave functions in a more appealing form for
the calculation. From Eqn. (22) we had

1
{2 luutd) + 2 |dutuly + 2 [utduly — [uTutd’)

|PT> :\/_1_8

(106)
— Jutuldy — |dMutut — |dTut et — jutdtuty — quTui)]
Rewriting in factorized form
1
1) = s (o) — 2w ) (11423 +140) = 2110 )
6v2 1 (107)
5 () =) ) (114 = o))
From Eqn. (31) we have the neutron wave function
TZL[TT¢ PN ) | bt
In') \/1_8|dud>—|—|ude)+|ddu>—|—|dud) .
+ |d'd*uly + [utdrdty — 2 |dTutdy — 2 [utdtdT) — 2 |ffu¢>}
Rewriting
) = = o () + dud) = 2ladud ) (1040 + 1141) — 2111) )
6v2 1 (109)
5 () jaua) ) (1) = 1) )

First calculating T ' on the neutron wave function

T, In') = b < luud) + |udu) + |uud) + |duu) — 2 |udu) — 2 |duu>) (|T¢T> + |41 — 2 |TT¢>)

6v2
1
+ 2—\/5 ( luud) + |udu) — |uud) — |duu)) (|T¢T> - |¢TT>>
(110)
1
= b (2t — )~ ) ) (1140 + ) 21110 "

o (o) — ) ) (1191~ ) )
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=p") (112)

o) ) (1141 + 14711 )
d) — 2} ) (= [148) +4t1) — 21140 )

aa ) (=) - 1))
.,

) ) (1160 + 14910 + 21110 )
(|udu ) ) (1140 - 1ot )
1

== oo | (=t 1110 ) + (= 112y + 3110+ 1))

(-
(b 3 10— ) + 6 11149) ) = 5= (2w (1) + 1))
|

(113)

[\)
S»—t
[\)

= ((luad = b)) (1) = 411)) )
(114)

=~ [(2 luud) (3111) + 3[L11) — 2[11]) ))

( fudu) (— [141) + 3141 + [11) >)
(115)

+ ((1aw) (31101 - W)+ s110) )|

+ ﬁ K( [udu) = [duu) ) ([141) = 1) ))]
And calculating (p'| 323 05T |n")

3
X 60 1 1 5
:TETT:———:— 116
ga <P’i:103+’n> 72"‘3“‘2 3 (116)
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The experimental measure of g4
g4’ = —1.2724 £ 0.0023 (117)

gl — —1.67 (118)

This is a large discrepancy and one of the many shortcomings of the SU(6) quark model.
As discussed by Giirsey and Radicati [7] this value is actually the unrenormalized
value for the axial vector constant, see [8].

Concluding Remarks

We have now seen three predictive calculations in the SU(6) quark model. Somewhat
surprisingly the model makes very agreeable predictions in regards to the baryon octet
magnetic moments. We saw that the additive quark model made decent predictions
for the mass splittings within the multiplets. Of course, the hCQM and generalized
GR mass formula made very accurate predictions of the ground state and excited
state baryons. Finally in the last calculation of the axial vector constant, SU(6) did
not produce an accurate result. This was a clue that a more accurate theory was
needed to describe the weak interactions. Of course probably the most glaring issue
with SU(6) is that the calculated ground state wave functions are totally symmetric
under interchange of two quarks. We know that fermion wave functions must be
totally anti-symmetric. So we know SU(6) can’t be the end of the story, bring on the
color index!
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1 Appendix

Below are the generators for SU(6)
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