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1 A BIT OF GENERAL RELATIVITY

1 A bit of General Relativity

In general relativity the metric is promoted to a dynamical field variable. In the
presence of an energy density, the metric (spacetime) acquires off diagonal elements
resulting in curvature. We define curvature in terms of the parallel transport of
vectors along closed curves. In the presence of curvature, derivative operators do not
commute and upon travelling along a closed curve we find that the initial vector V
does not remain parallel to the parallel-transported vector V ′. When we speak of
parallel transport we mean that the vector is moved along the instantaneous tangent
plane to the surface along the curve.

We define the (covariant) derivative operator ∇, on a manifold M as a map which
takes each smooth tensor field of type (k, l) to a smooth tensor field of type (k, l+ 1).
That is, the derivative operator tacks on one more covariant index to the tensor field
with which it acts upon. The derivative operator also satisfies five properties

1. Linearity

∇c (αA
a1···ak

b1···bl + βBa1···ak
b1···bl) = α∇cA

a1···ak
b1···bl + β∇cB

a1···ak
b1···bl (1)

2. Leibnitz rule

∇e [A
a1···ak

b1···blB
a1···ak

b1···bl ] = [∇eA
a1···ak

b1···bl ]B
a1···ak

b1···bl+Aa1···ak
b1···bl [∇eB

a1···ak
b1···bl ]

(2)

3. Commutativity with contraction

∇d(A
a1···ak

b1···bl) = ∇dA
a1···ak

b1···bl (3)

4. Consistency with the notion of tangent vector as directional derivatives on
scalar fields. For t ∈ Vp where Vp is the tangent space at a point p of a manifold
M and f ∈ T where T is the set of smooth function from manifold M into R.

t(f) = ta∇af (4)

5. Torsion free1

∇a∇bf = ∇b∇af (5)

1This condition is not necessary, in the case it is not imposed, ∇a∇bf −∇b∇af = −T c
ab∇cf

where T c
ab is antisymmetric in a and b and is called the torsion tensor.
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1 A BIT OF GENERAL RELATIVITY

Any “rule” ∇, for producing new vector fields from old and which satisfy the five
conditions above, is called by differential geometers a “symmetric covariant derivative”.
There are as many ways of defining a covariant derivative ∇ as there are of rearranging
sources of the gravitational field. Different geodesics (free-fall trajectories) result from
different distributions of masses and thus different definitions of ∇. This raises the
question of uniqueness. From property (4) we know that any two derivative operators
must agree in their action on scalar fields. What about the next lowest ranking tensor
field? By comparing the difference of two derivative operators ∇ and ∇̃ when acting
on a dual vector field ωb we find that the difference (∇− ∇̃) defines a map of dual
vectors at a point p to tensors of rank ( 1

2 ) at p. Thus, given any any two derivative
operators there exists a tensor field Cc

ab such that

∇aωb = ∇̃aωb − Cc
abωc (6)

Where Cc
ab = Cc

ba. This displays the potential disagreement of ∇ and ∇̃ on dual
vector fields. For arbitrary tensor fields we find

∇aT
b1···bk

c1···cl = ∇̃aT
b1···bk

c1···cl +
∑
i

Cbi
adT

b1···d···bk
c1···cl

−
∑
j

Cd
acjT

b1···bl
c1···d···cl

(7)

Thus, the difference between the two derivative operators ∇ and ∇̃ is completely
characterized by the tensor field Cc

ab. We see that, given only the manifold structure,
there are many distinct choices of derivative operator ∇, none preferred over the
other. However, if we are given a metric gab on the manifold, a natural choice of
derivative operator is uniquely picked out. With a metric in hand, it a very natural
condition for parallel transport seemingly pops out. Consider two vectors va and ua.
If we parallel-transport these two vectors we would demand that their inner product
remain invariant. After all, parallel transport should preserve angles and magnitudes
between and of these vectors. If we consider a parallel transport in some direction w
in the tangent plane

∇w(gabv
aub) = (∇wgab)v

aub + gab(∇wv
a)ub + gabv

a(∇wu
b) = 0 (8)

During parallel transport the components of v and u will remain the same (∇wv
a =

∇wu
b = 0).

vaub∇wgab = 0 (9)

Thus, the dot product of two vector which are parallel transported will be preserved
if and only if

∇wgab = 0 (10)
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1 A BIT OF GENERAL RELATIVITY

This condition uniquely determines ∇. We can prove this by again considering two
derivative operators ∇ and ∇̃. From Eqs. (7) and (10) we have

0 = ∇agbc = ∇̃agbc − Cd
abgdc − Cd

acgbd (11)

∇̃agbc = Cd
abgdc + Cd

acgbd (12)

∇̃agbc = Ccab + Cbac (13)

By renaming indices we also have

∇̃bgac = Ccba + Cabc (14)

∇̃cgba = Cacb + Cbca (15)

Adding the first two relations

Ccab + Cbac + Ccba + Cabc = ∇̃agbc + ∇̃bgac (16)

2Ccab + Cbac + Cabc = ∇̃agbc + ∇̃bgac (17)

Subtracting Eq.(15)

2Ccab + Cbac + Cabc − Cacb − Cbca = ∇̃agbc + ∇̃bgac − ∇̃cgba (18)

2Ccab = ∇̃agbc + ∇̃bgac − ∇̃cgba (19)

Cc
ab =

1

2
gcd

(
∇̃agbd + ∇̃bgad − ∇̃dgba

)
(20)

This choice of Cc
ab satisfies Eq.(10) uniquely. A metric gab then, naturally defines a

derivative operator ∇.

As I said at the beginning of this section, we can use the path dependence of parallel
transport to define an intrinsic notion of curvature. We do a similar calculation as
above but for the action of two derivative operators. We find that the difference of
interchanged orderings of the derivative operators can be expressed as a rank ( 1

3 )
tensor field.

∇a∇bωc −∇b∇aωc = Rabc
dωd (21)

Rabc
d is called the Riemann curvature tensor and is directly related to the failure of

a vector to return to its initial value when parallel transported around a small closed
curve. For an arbitrary tensor field

(∇a∇b −∇b∇a)T
c1···ck

d1···dl = −
k∑

i=1

Rabe
ciT c1···e···ck

d1···dl

l∑
j=1

Rabdj
eT c1···ck

d1···e···dl

(22)
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1 A BIT OF GENERAL RELATIVITY

The Riemann tensor has the following properties

1. Rabc
d = −Rbac

d

2. R[abc]
d = 0

3. For the derivative operator ∇a naturally associated with the metric, ∇agbc = 0,
we have

Rabcd = −Rabdc (23)

4. The Bianchi identity holds2:

∇[aRbc]d
e = 0 (26)

1

6
(∇aRbcd

e −∇bRacd
e +∇bRcad

e +∇cRabd
e −∇cRbad

e −∇aRcbd
e) = 0 (27)

It is useful to decompose the Riemann tensor into a ’trace part’ and a ’trace free
part’. From properties (1) and (3) the trace over its first and last two indices vanishes.
However, the trace over the second and fourth (or first and third) define the Ricci
tensor, Rac

Rac = Rabc
b (28)

The Ricci tensor is a symmetric tensor Rac = Rca. The scalar curvature, R, is the
trace over the Ricci tensor

R = Ra
a (29)

The trace-free part of the Riemann tensor is called the Weyl tensor (conformal tensor),
Cabcd. For manifold of dimensions n ≥ 3 the Weyl tensor is defined by

Rabcd = Cabcd +
2

n− 2
(ga[cRd]b − gb[cRd]a)−

2

(n− 1)(n− 2)
Rga[cgd]b (30)

2Note the notation

T[a1···al] =
1

p!

∑
π

δπTaπ(1)···aπ(p)
(24)

where the sum is taken over all permutations, π, of 1, . . . , p and δπ is +1 for even permutations and
−1 for odd permutations. Brackets [· · · ] indicate antisymmeterization over the indicies whereas
parentheses (· · · ) indicate symmeterization. For example,

T(ab) =
1

2
(Tab + Tba) T[ab] =

1

2
(Tab − Tba) (25)

The 1/p! factor ensures that the symmeterization is of strength one i.e. if we symmetrize or
antisymmetrize twice, the tensor remains the same T((a1···an)) = T(a1···an), T[[a1···an]] = T[a1···an].
The symmetric and antisymmetric tensors resulting from the tensor T are termed cotensors of T .
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1 A BIT OF GENERAL RELATIVITY

Contracting Eq.(27) gives an important relation. First contracting a and e

1

6
(∇aRbcd

a −∇bRacd
a +∇bRcad

a +∇cRabd
a −∇cRbad

a −∇aRcbd
a) = 0 (31)

1

6
(∇aRbcd

a +∇bRcad
a +∇bRcad

a −∇cRbad
a −∇cRbad

a +∇aRbcd
a) = 0 (32)

∇aRbcd
a +∇bRcd −∇cRbd = 0 (33)

Raising the d index and contracting b and d gives

∇aRc
a +∇bRc

b −∇cR = 0 (34)

Or,
∇aGab = 0 (35)

where

Gab = Rab −
1

2
Rgab (36)

Gab is known as the Einstein tensor.

Okay, so where does this lead us? Well, we now have the tools to compare arbitrarily
ranked tensor fields in different coordinate frames or on manifolds with perturbed
metrics. Let’s now express the Riemann curvature tensor in terms of arbitrary
connection coefficients. We start from Eq.(6) where we relate two differential operators
acting on dual vector fields

∇bωc = ∇̃bωc − Cd
bcωd (37)

Using Eq.(7)
∇a∇bωc = ∇̃a(∇̃bωc − Cd

bcωd)

− Cd
ab∇̃dωc − Cd

ac∇̃bωd

− Cd
abC

b
ceωd + Cd

abC
c
deωc

+ Cd
acC

e
bdωe + Cd

abC
b
ceωd

(38)

The first term on the third line cancels with the final term leaving us with

∇a∇bωc = ∇̃a(∇̃bωc − Cd
bcωd)

− Cd
ab(∇̃dωc − Cc

deωc)

− Cd
ac(∇̃bωd − Ce

bdωe)

(39)
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1 A BIT OF GENERAL RELATIVITY 1.1 Conformal transformations

Taking the difference with ∇b∇a and using the symmetry properties of Ca
bc (we see

immediately the second line will cancel because it is symmetric in ab)

(∇a∇b −∇b∇a)ωc = (∇̃a∇̃b − ∇̃b∇̃a)ωc − (∇̃aC
d
bc − ∇̃bC

d
ac)ωd

− Cd
ac(∇̃bωd − Ce

bdωe)

+ Cd
bc(∇̃aωd − Ce

adωe)

(40)

Of course we can rewrite (∇̃a∇̃b − ∇̃b∇̃a)ωc = R̃d
abcωd. In the last line we swap

bc → cb and rename b → a

Rabc
dωd = R̃d

abcωd − (∇̃aC
d
bc − ∇̃bC

d
ac)ωd

+ (Cd
ca∇̃b − Cd

ac∇̃b)ωd

+ (Ce
acC

d
be − Ce

bcC
d
ae)ωd

(41)

Because this holds for any ωd we can drop this factor. The second line cancels
(Cd

ca = Cd
ac) and we are left with the following relation

Rabc
d = R̃d

abc + 2
[
−∇̃[aC

d
b]c + Ce

c[aC
d
b]e

]
(42)

1.1 Conformal transformations

Now we look to put it all together by comparing the quantities we have computed
above under conformal transformations. Let M be an n-dimensional manifold with
metric gab of any signature. If W is a smooth, strictly positive function, then the
metric g̃ab = W 2gab is said to arise from gab via a conformal transformation. Both
metrics obey the same causal structures. Their inverses are given by gab and g̃ab and
g̃ab = W−2gab such that g̃abg̃bc = W 2W−2gabgbc = δac. Each metric is accompanied by
a derivative operator∇ with gab and ∇̃ with g̃ab such that∇agbc = ∇̃ag̃bc = 0. The two
operators are related via Eq.(7). Interchanging ∇ and ∇̃ i.e. (∇̃aωb = ∇aωb−Cc

abωc)
we see that the connection coefficients Cc

ab are now given by Eq.(20)

Cc
ab =

1

2
g̃cd (∇ag̃bd +∇bg̃ad −∇dg̃ba) (43)

=
1

2
W−2gcd

(
∇a(W

2gbd) +∇b(W
2gad)−∇d(W

2gba)
)

(44)

Noting ∇agbc = 0

= W−1gcd (gbd∇aW + gad∇bW − gba∇dW ) (45)
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1 A BIT OF GENERAL RELATIVITY 1.1 Conformal transformations

= gcd (gbd∇a lnW + gad∇b lnW − gba∇d lnW ) (46)

= δcb∇a lnW + δca∇b lnW − gcdgba∇d lnW (47)

= 2δc(b∇a) lnW − gcdgba∇d lnW (48)

Of particular interest is the relation of curvature R̃d
abc associated with ∇̃ and Rabc

d

associated with ∇. We have already done this computation! The result is given in
Eq.(42)

R̃d
abc = Rabc

d + 2
[
−∇[aC

d
b]c + Ce

c[aC
d
b]e

]
(49)

= Rabc
d −∇aC

d
bc +∇bC

d
ac + Ce

acC
d
be − Ce

bcC
d
ae (50)

= Rabc
d + (Ce

acC
d
be −∇aC

d
bc)− (Ce

bcC
d
ae −∇bC

d
ac) (51)

Plugging in our derived connection coefficients from Eq.(48) explicitly term by
term

∇aC
d
bc = ∇a

[
(δdc∇b + δdb∇c − gdegcb∇e) lnW

]
(52)

= δdc∇a(∇b lnW ) + δdb∇a(∇c lnW )− gdegcb∇a(∇e lnW ) (53)

Ce
acC

d
be = (δec∇a lnW+δea∇c lnW−gefgca∇f lnW )(δde∇b lnW+δdb∇e lnW−gdhgeb∇h lnW )

(54)
= δdc(∇a lnW )∇b lnW + δdb(∇a lnW )∇c lnW − (∇a lnW )gbcg

df∇f lnW

+ δda(∇c lnW )∇b lnW + δdb(∇c lnW )∇a lnW − (∇c lnW )gabg
dh∇h lnW

− gcag
df (∇f lnW )∇b lnW − gcaδ

d
bg

ef (∇f lnW )∇e lnW + (∇b lnW )gcag
df∇f lnW

(55)

∇bC
d
ac = Eq.(52) with a ⇔ b (56)

Ce
bcC

d
ae = Eq.(55) with a ⇔ b (57)

Putting everything together and noting from Eq.(51) that the full expression is
asymmetric in a and b

R̃d
abc = Rabc

d + 2

[
δd[a∇b]∇c lnW − gdegc[a∇b]∇e lnW

+ (∇[a lnW )δdb]∇c lnW − (∇[a lnW )gb]cg
df∇f lnW

− gc[aδ
d
b]g

ef (∇e lnW )∇f lnW

] (58)
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1 A BIT OF GENERAL RELATIVITY1.2 Computing Curvature with a coordinate frame

Tracing over b and d gives the Ricci tensor

R̃ac = Rac − (n− 2)∇a∇c lnW − gacg
de∇d∇e lnW

+ (n− 2)(∇a lnW )∇c lnW − (n− 2)gacg
de(∇d) lnW∇e lnW

(59)

Contracting the above equation with g̃ac = W−2gac give the scalar curvature

R̃ = W−2
[
R− 2(n− 1)gac∇a∇c lnW − (n− 2)(n− 1)gac(∇a lnW )∇c lnW

]
(60)

Eqs.(58)(59)(60) describe how curvature is changed by conformal transformations.

1.2 Computing Curvature with a coordinate frame

Upon choosing a coordinate frame we can write

Rµνρ
σ =

∂

∂xν
Γσ

νρ −
∂

∂xµ
Γσ

νρ + Γα
µρΓ

σ
αν − Γα

νρΓ
σ
αµ (61)

Rµρ = Rµνρ
ν =

∂

∂xν
Γν

µρ −
∂

∂xµ
Γν

νρ + Γα
µρΓ

ν
αν − Γα

νρΓ
ν
αµ (62)

R = Rµ
µ =

∂

∂xν
Γνµ

µ −
∂

∂xµ
Γνµ

ν + Γαµ
µΓ

ν
να − Γαµ

νΓ
ν
αµ (63)

In the coordinate basis the components of the Christoffel symbol are given by

Γρ
µν =

1

2
gρσ

[
∂gνσ
∂xµ

+
∂gµσ
∂xν

− ∂gµν
∂xσ

]
(64)

We note that,

Γν
νµ =

1

2
gµα

∂gνα
∂xµ

(65)

Using the formula for the inverse of a matrix,

gµα
∂gνα
∂xµ

=
1

g

∂g

∂xµ
(66)

And thus,

Γν
νµ =

1

2

1

g

∂g

∂xµ
(67)
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2 RANDALL-SUNDRUM MODEL

2 Randall-Sundrum Model

The scale of electroweak symmetry breaking: 246 GeV. The Planck scale: 1019 GeV.
RS models attempt to resolve this “hierarchy” of scales. RSI models begin by adding
a fifth spatial dimension which is compactified onto a S1/Z2 orbifold (circle with
two hemispheres identified with each other θ = −θ). This results in a mandatory
assignment of parity charges for all fields as well as an invariance of the action
under this parity transformation (due to the arbitrary assignment of parity charge).
Even with the fifth dimension curved we still suspect that at every point in the fifth
dimension the other four dimensions will obey local Poincare invariance. Thus, all
along the compactified fifth dimension the induced metric must still be the familiar
flat Minkowski metric ηµν = diag(1,−1,−1,−1). The 5-D metric will be a function
of the fifth coordinate y. The most general ansatz for the five-dimensional metric is
given by

ds2 = Ω(y)dxµdxνηµν − dy2 (68)

The amount of curvature is directly related to the function Ω(y) and thus is called
the warp factor. From the discussion above, in the absence of the fifth dimension, the
metric must obey the usual Minkowski metric giving the condition Ω(0) = 1. Our
job now is to calculate Ω(y). We begin by transforming to a conformally flat frame
(a frame in which all metrics are related via overall rescalings)

dy = Ω(z)1/2dz (69)

Giving the metric
ds2 = Ω(z)(dxµdxνηµν − dz2) (70)

= Ω(z)ηMNdx
MdxN

Where ηMN is the flat 5-D metric ηMN = diag(1,−1,−1,−1,−1). This metric is
invariant under rescaling of the coordinates (xµ → αxµ, z → αz) assuming Ω(z) →
Ω(αz) = Ω(z)/α2. From our previous sections we see that Ω(z) just a conformal
transformation i.e. gMN = Ω(z)g̃MN . This opens all of the tools in the previous
section. Eqs.(59)(60) allow us to relate the Einstein tensor GMN = RMN − 1

2
gMNR

under the two different metrics gMN and g̃MN in any number of dimensions n. We
redefine our conformal transformation

Ω(z) → e−ω(z) (71)
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2 RANDALL-SUNDRUM MODEL

for convenience and with the expressions in Eqs.(59)(60) in mind. The relation
between the two Einstein tensors reads

GMN =G̃MN +
d− 2

2

[
1

2
∇̃Mω∇̃Nω + ∇̃M∇̃Nω

− g̃MN

(
∇̃K∇̃Kω − d− 3

4
∇̃Kω∇̃Kω

)] (72)

Where the covariant derivative ∇̃ are with respect to the metric g̃. The Einstein
tensor on the left hand side is computed with the g metric. In our calculation, d = 5,
g̃MN = ηMN and thus, ∇̃M → ∂M .

GMN = G̃MN +
3

2

[
1

2
∂Mω∂Nω + ∂M∂Nω − ηMN

(
∂K∂

Kω − 1

2
∂Kω∂

Kω

)]
(73)

The only non-zero terms coming from derivatives are those acting on the fifth
dimension ∂µω(z) = 0. Thus, we are left with components G55 and Gµν

G55 = G̃55 +
3

2

[
1

2
(∂5ω)

2 + ∂2
5ω − ∂2

5ω +
1

2
(∂5ω)

2

]
(74)

= G̃55 +
3

2
(∂5ω)

2 (75)

Gµν = G̃µν −
3

2
ηµν

(
−∂2

5ω +
1

2
(∂5ω)

2

)
(76)

In the vacuum (flat metric) the Einstein tensor reduces to zero, G̃MN = 0. Defining
∂5ω ≡ ω′ we are left with the following Einstein tensor components

G55 =
3

2
ω′2 (77)

Gµν = −3

2
ηµν(−ω′′ +

1

2
ω′2) (78)

Einstein’s field equation is written as

GMN = κ2TMN (79)

Where κ is the Einstein gravitational constant. In 5D the gravitational constant is
related to the 5D Planck scale by

κ2 =
1

M3
∗

(80)
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2 RANDALL-SUNDRUM MODEL

The five dimensional action for gravity with a bulk cosmological constant is given
by

S = −
∫

d5x
√
g(M3

∗R + Λ) (81)

The variation of the action with respect to the scalar curvature results in Einstein’s
tensor. For the second term we have

SΛ = −
∫

d5x
√
gΛ (82)

Generically the stress-energy tensor is defined as the variation of the Lagrangian with
respect to the metric tensor

TMN =
δL

δgMN
(83)

Given Eq.(81) and the useful identity for some non-singular matrix A

δ(detA) = detATr
[
δ(A)A−1

]
(84)

Yielding the result

δ(
√

detgMN) =
1

2
√
detgMN

δ(detgMN) =
detgMN

2
√
detgMN

Tr
[
δ(gMN)g

MN
]

(85)

Because the metric is diagonal we are left with (detgMN ≡ g)

δ(
√
g) =

1

2

√
ggMNδgMN = −1

2

√
ggMNδg

MN (86)

Taking the variation of the Lagrangian above

δL = −δ(
√
g)Λ =

1

2

√
ggMNδg

MNΛ (87)

Noting3,

detgMN =
5∏

i=0

gii = 1, i = 0, 1, 2, 3, 5 (88)

Thus, the variation of the Lagrangian with respect to the metric, i.e. the stress-energy
tensor, is given by

TMN =
δL

δgMN
=

1

2
ΛgMN (89)

3Also note that in the case of the flat Minkowski metric g = det gµν = −1 in which case our
volume element factor would be defined as

√
−g
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2 RANDALL-SUNDRUM MODEL

This stress-energy can be interpreted as the back-reaction of gravity due to the tension
(energy density) of the branes. We now have Einstein’s field equations

GMN =
1

2M3
∗
ΛgMN (90)

We see that the 5-5 component gives us the relation

3

2
ω′2 =

Λ

2M3
∗
g55 (91)

3

2
ω′2 =

Λ

2M3
∗
e−ω(z)η55 (92)

3

2
ω′2 = − Λ

2M3
∗
e−ω(z) (93)

ω′eω(z)/2 =

√
− Λ

3M3
∗

(94)

This yields the solution

ω(z) = 2 ln

[
C + z

√
− Λ

12M3
∗

]
(95)

eω(z)/2 = C + z

√
− Λ

12M3
∗

(96)

where C is a constant which we fix using the required conformal symmetry con-
straint

e−ω(αz) =
1

α2
e−ω(z) (97)

implying C = 0 or if C ̸= 0 under conformal transformations it is rescaled as
C → C/α2. We note that the argument of the natural logarithm must be positive,
and thus we require Λ < 0, z > 0. The first requirement indicates that we are
working in an anti-de Sitter space, and the latter is enforced via our compactification
scheme on the S1/Z2 orbifold, requiring z = −z. Defining the positive constant
k2 ≡ −Λ/12M3

∗ we have the following solution

e−ω(z) =
1

k2|z|2
(98)
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2 RANDALL-SUNDRUM MODEL 2.1 Radius Stabilization

We should note that the transformation diverges as z → 0 and thus we will need a
regularization procedure to define the transformation on the boundary.

We have found a metric which is a solution to the radial component of the Einstein
field equation. Now we need to check that the metric solution is fully consistent
with bulk Einstein field equations. The bulk field equations are given in Eq.(78) and
we can equate these with the bulk cosmological constant energy density derived in
Eq.(90)

3

2
ηµν(ω

′′ − 1

2
ω′2) =

1

2M3
∗
Λgµν (99)

3

2
ηµν(ω

′′ − 1

2
ω′2) =

1

2M3
∗
Λeω(z)ηµν (100)

3

2
(ω′′ − 1

2
ω′2) =

Λ

2M3
∗

1

k2|z|2
(101)

3

2
(ω′′ − 1

2
ω′2) = − 6

|z|2
. (102)

Our solution, because it contains an absolute value, contains a delta-function contri-
bution within it’s second derivative [TM: Re-frame this in the language of junction
conditions]

ω′′ = − 2

z2
+

4

|z|
(δ(z)− δ(z − zIR)) (103)

giving the bulk field equation

− 6

|z|2
+

6

|z|
(
δ(z)− δ(z − zIR)

)
̸= − 6

|z|2
. (104)

This indicates that in order for Eq.(98) to be a valid solution, we require each brane
to carry additional energy density to cancel these delta-function contributions.

2.1 Radius Stabilization

In the above section, the magnitude or radius of the extra dimension was ad hoc,
defined in such a way to solve the hierarchy problem. We should note, however, in
the absence of a potential along the radial dimension, we are left with a moduli space
consisting of a single flat direction that may generate a massless scalar field known as
the radion from excitations perpendicular to the radial dimension. A massless scalar
particle is phenomenologically unviable and hence we require a mechanism to give
the radion a mass and dynamically stabilize the size of the extra dimension. The

13



2 RANDALL-SUNDRUM MODEL 2.1 Radius Stabilization

simplest dynamical solution for radius stabilization was proposed by Goldberger and
Wise (GW). The proposal was this: introduce a bulk scalar field in the RS setup
with a mass generated by means of a non-trivial potential along the radial coordinate
between the two branes.

To realize GW mechanism we denote the scalar field as Φ and consider the following
action

S =

∫
d5x

√
g

(
−M3

∗R +
1

2
∇Φ∇Φ− V (Φ)

)
−
∫

d4x
√
gUVλUV(Φ)−

∫
d4x

√
gIRλIR(Φ)

(105)
where the first term is the usual Einstein-Hilbert action and the final two terms
denote the brane induced potentials for the scalar field on the UV and IR branes. Just
as in the RS set-up we consider the looks for a metric solving Einstein’s equations
with the following ansatz

ds2 = e−2A(y)ηµνdx
µdxν − dy2 (106)

Instead of deriving Einstein’s equations as done in the previous sections we will first
do the computation via the more ‘traditional’ methods for explicitness. Once we have
a result, we will check these results against those obtained using the other method.
By ‘traditional’ methods I mean explicitly computing the components of the Einstein
tensor via the Riemann tensor. We have the following diagonal metric

gMN =


e−2A(r)

−e−2A(r)

−e−2A(r)

−e−2A(r)

−1

 (107)

along with the following definitions

Rµ
ναβ = ∂αΓ

µ
νβ − ∂βΓ

µ
να + Γµ

ραΓ
ρ
νβ − Γµ

ρβΓ
ρ
να (108)

Rµν = Rα
µαν = ∂αΓ

α
µν − ∂νΓ

α
µα + Γα

ραΓ
ρ
µν − Γα

ρνΓ
ρ
µα (109)

Γρ
µν =

1

2
gρσ (∂µgνσ + ∂νgµσ − ∂σgµν) (110)

GMN = RMN − 1

2
gMNR. (111)

14



2 RANDALL-SUNDRUM MODEL 2.1 Radius Stabilization

Starting with the first term of Eq.(109):

Γα
µν =

1

2
gασ (∂µgνσ + ∂νgµσ − ∂σgµν) (112)

We are interested in the equations of motion along the radial and bulk directions
(the time equations of motion will give the same information as the bulk evolution)
thus we check to see if we have non-zero components. The only non-zero contribution
from the first term comes from the bulk component differentiated with respect to the
radial direction (M = i, N = i, α = r)

(−1)∂rΓ
r
ii = −1

2
∂r {grσ(∂igiσ + ∂igσ − ∂σgii)} (113)

when σ = r

= −1

2
∂r {−grr∂rgii} = ∂r{A′e−2A} = A′′e−2A − 2A′2e−2A. (114)

The second term does not contribute

∂νΓ
α
µα = 0 (115)

Likewise, the third term does not contribute

Γα
ραΓ

ρ
µν = 0 (116)

The final term contributes to both the bulk and radial equations of motion, expanded
in full we have the following

Γα
ρνΓ

ρ
µα =

1

4
gασgργ

[
∂ρgνσ∂µgαγ + ∂ρgνσ∂αgµγ − ∂ρgνσ∂γgµα

+ ∂νgρσ∂µgαγ + ∂νgρσ∂αgµγ − ∂νgρσ∂γgµα

− ∂σgρν∂µgαγ − ∂σgρν∂αgµγ + ∂σgρν∂γgµα

] (117)

where the terms in red are those which contain non-zero contributions. Let’s iterate
through each term:

−1

4
gασgργ∂ρgνσ∂γgµα (118)

this will give a non-zero contribution when α = i, σ = i, ρ = r, γ = r, µ = i, ν = i

−1

4
giigrr∂rgii∂rgii = −e−2AA′2. (119)
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2 RANDALL-SUNDRUM MODEL 2.1 Radius Stabilization

The second non-zero term
1

4
gασgργ∂νgρσ∂µgαγ (120)

will give a contribution when α = i, σ = i, ρ = i, γ = i, µ = r, ν = r

1

4
giigii∂rgii∂rgii = A′2 (121)

The third non-zero term

−1

4
gασgργ∂σgρν∂αgµγ (122)

will give a contribution when α = r, σ = r, ρ = i, γ = i, µ = i, ν = i

−1

4
grrgii∂rgii∂rgii = −e−2AA′2 (123)

Putting it all together we have the following Riemann tensor components:

Rrr = A′2 (124)

Rii = A′′e−2A − 4A′2e−2A (125)

The scalar curvature is given by

R = gMNRMN = e−2ARtt − 3(A′′ − 4A′2)− A′2 (126)

To be continued...
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