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1 INTRODUCTION

I provide a detailed derivation of wave equations for four different force balances
on a electrically conducting fluid parcel within a rotating, infinite plane geometry
immersed in a uniform magnetic field. The different force balances reveal four different
wave motions. Namely; Inertial, Alfven, Magnetic-Coriolis(MC), and Magnetic-
Archimedes-Coriolis(MAC) waves. I then implement a plane wave solution into
these wave equations to find dispersion relations to further the understand the wave
properties.

1 Introduction

Earth’s magnetic field experiences temporal changes in its intensity, these changes
range over timescales from milliseconds to millions of years (geomagnetic pole rever-
sals). Diurnal variations refer to external-sourced temporal intensity changes on the
order of milliseconds to days. Interactions between solar radiation and the Earth’s
magnetosphere and ionosphere create streams of current that produce their own
magnetic field, these fields interact with the geomagnetic field and produces very
sudden changes to the core field. Secular variation (SV) is described by intensity
changes of the geomagnetic field on timescales of a year or more. General consen-
sus is that these variations are of internal-origin, more specifically originating from
variations in fluid flow within the outer core as well as at the core mantle boundary
(CMB). These secular variations are generally accepted to be of internal origin and
appear to have wave like properties(Alexandrescu et al 1995, 1996; Le Huy et al
1998; Bloxham et al 2002, Chambodut and Mandea 2005; De Michelis and Tozzi
2005). For example the phenomena known as the geomagnetic jerk is thought to be
caused by these magnetic waves generated at the core mantle boundary(CMB)(Malkin
2013,2015,2016). Much theoretical work has been done on this subject over the past
seventy years, starting with Hannes Alfven in 1942 when he predicted the existence
of electromagnetic-hydromagnetic waves in plasmas, now known as Alfven waves.
Since then many great geophysicists and applied mathematicians have succeeded in
developing the mathematical framework necessary to describe wave motions possibly
produced within the Earth’s outer core (Braginsky (1964; 1967), Chandrasekhar
(1961), Hide (1966), Malkus (1967), Moffatt (1978), Melchoir (1986), Finlay (2005),
Davidson (2001)).

Much of the basic wave motion properties of a rotating, electrically conducting,
incompressible fluid can be mathematically described by thinking about the force
balance on a fluid parcel within the a rotating infinite plane layer. Coriolis, Lorentz,
and buoyancy forces can be expected to be present. Because the fluid parcel has some
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mass and velocity relative to the rotating plane it possesses some inertia which will
resist any force attempting to slow it down as described by Newton’s first law. Having
elucidated the relevant forces that a rotating, electrically conducting fluid parcel
could experience in a non-diffusive, non-convecting fluid we can easily imagine four
different force balances, all of which produce different wave motions with different
wave properties. This will be the main focus of what is to follow. Before though, we
should take a moment to appreciate the complexity of the motion experienced by
this fluid parcel which can give us some insight into the very complex motions of the
outer core that generate the Earth’s magnetic field.

I will derive various wave equations emerging due to four different force balances.
Then I assume a plane wave solution and find dispersion relations for each. I start
with the simple case of inertial wave and Alfven waves and then continue to add
various forces to find wave equations for MC and MAC waves. By manipulating the
Navier-Stokes equation, magnetic induction equation and the heat equation I am able
to produce these wave equations of the form

∂2u

∂t2
= c2∇2u

With these derivations I attempt to build a better intuition of the relevant wave
motions present within the core and how they may be revealed at the surface expressed
as secular variation.

2 Methods

I began my investigation by deriving four wave equations using the Navier-Stokes
Equation for a rotating magnetohydrodynamic fluid, the magnetic induction equation
and the Heat equation.

ρo

[
∂u

∂t
+ (u · ∇)u+ 2(Ω× u)

]
= −∇P − ρoαvTg +

1

µ0

(J×B) + ρoν∇2u

∂B

∂t
= ∇× (u×B) + η∇2B

∂T

∂t
+ (u · ∇)T = κ∇2T + ε

We begin with the simplest case first, namely inertial waves. For all of the wave
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equations I assume an infinite plane geometry. Inertial waves are present when the
Coriolis forces exceed the Lorentz force experienced by the fluid parcel. In this case
the Navier-Stokes equation (1) reduces to

∂u

∂t
+ 2(Ω× u) = − 1

ρo
∇P

We are only interested in leading order terms in u so the (u • ∇)u term is neglected
as well as the ρoν∇2u term. In order to achieve a wave equation from this we need
to take the curl twice as well as a time derivative.

Taking one curl...

∂(∇× u)

∂t
+ 2(∇× (Ω× u)) = − 1

ρo
(∇×∇P )

Noticing the curl of the gradient = 0 the pressure term goes away and realizing in an
incompressible fluid (∇× (Ω× u)) = −(Ω · ∇)u we get

∂(∇× u)

∂t
− 2(Ω · ∇)u = 0

Taking a time derivative yields

And another curl

∂2(∇× u)

∂t2
= 2(Ω · ∇)

∂u

∂t

∂2(∇×∇× u)

∂t2
= 2(Ω · ∇)

∂(∇× u)

∂t

Seeing that ∇∇∇uu = ∇(∇ · u)−∇2u = −∇2u and replacing the time derivative
of ∇xu with what we found a few step earlier yields our wave equation for an inertial
wave.

∂2 (∇2u)

∂t2
= −4(Ω · ∇)2u
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Next we derive a wave equation for Alfven wave which are present when the magnetic
forces dominate over the coriolis forces. In this case we linearise (1) and reduce it
to

∂u

∂t
= − 1

ρo
∇P +

1

ρoµ
(Bo · ∇)b

We also will need the linearised induction equation

Taking the curl of both

∂b

∂t
= (Bo · ∇)u

∂(∇× u)

∂t
= − 1

ρo
(∇×∇P ) +

1

ρoµ
(Bo · ∇) (∇× b)

∂(∇× b)

∂t
= (Bo · ∇) (∇× u)

Then taking a time derivative of both

∂2(∇× u)

∂t2
=

1

ρoµ
(Bo · ∇)

∂(∇× b)

∂t

And replacing the time derivative of the curl of the magnetic field with our above
result give us a wave equation for an Alfven wave

∂2(∇× u)

∂t2
=

1

ρoµ
(Bo · ∇)2 (∇× u)

Now that we have derived wave equations for situations where magnetic forces or
coriolis forces dominate, we will consider the situation where both forces are prevalent
but neither dominate. These waves are called Alfven-Inertial or Magnetic-Coriolis(MC)
waves. We start with the Navier-Stokes equation which reduces to

∂u

∂t
+ 2(Ω× u) = − 1

ρo
∇P +

1

ρoµ
(Bo · ∇)b

Taking the curl gives
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∂(∇× u)

∂t
+ 2(∇× (Ω× u)) = − 1

ρo
(∇×∇P ) +

1

ρoµ
(Bo · ∇) (∇× b)

∂(∇× u)

∂t
− 2(Ω · ∇)u =

1

ρoµ
(Bo · ∇) (∇× b)

Time derivative

∂2(∇× u)

∂t2
− 2(Ω · ∇)

∂u

∂t
=

1

ρoµ
(Bo · ∇)

∂(∇× b)

∂t

∂2(∇× u)

∂t2
− 2(Ω · ∇)

∂u

∂t
=

1

ρoµ
(Bo · ∇)2 (∇× u)

Taking the curl one more time and simplifying

∂2(∇×∇× u)

∂t2
+ 2(Ω · ∇)

∂(∇× u)

∂t
=

1

ρoµ
(Bo · ∇)2 (∇×∇× u)

∂(∇× u)

∂t
= − ∇2u

2(Ω · ∇)

(
∂2

∂t2
− 1

ρoµ
(Bo · ∇)2

)
Taking a time derivative of ( ) and replacing the time derivative of the curl of the
fluid parcel velocity into it

∂3(∇× u)

∂t3
− 2(Ω · ∇)

∂2u

∂t2
=

1

ρoµ
(Bo · ∇)2

∂(∇× u)

∂t

− 1

2(Ω · ∇)

∂2∇2u

∂t2

(
∂2

∂t2
− 1

ρoµ
(Bo · ∇)2

)
+

1

ρoµ
(Bo · ∇)2

∇2u

2(Ω · ∇)

(
∂2

∂t2
− 1

ρoµ
(Bo · ∇)2

)
= 2(Ω · ∇)

∂2u

∂t2

− ∇2u

2(Ω · ∇)

(
∂2

∂t2
− 1

ρoµ
(Bo · ∇)2

)(
∂2

∂t2
− 1

ρoµ
(Bo · ∇)2

)
= 2(Ω · ∇)

∂2u

∂t2

Simplifying yields a wave equation for an MC wave

(
∂2

∂t2
− 1

ρoµ
(Bo · ∇)2

)2

∇2u = −4(Ω · ∇)2
∂2u

∂t2
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Finally I derive a wave equation for a Magnetic-Archimedes-Coriolis (MAC) wave.
This wave equation takes into account the buoyant force arising from a temperature
gradient. We will assume slow fluid motions so the time derivative of the velocity
of the fluid parcel is ignored. The governing equations including the Navier-Stokes
equation, magnetic induction equation and the heat equation simplify to

2(Ω× u) = − 1

ρo
∇P +

1

µρo
(Bo · ∇)b+ gαΘẑ

∂b

∂t
= (Bo · ∇)u

∂Θ

∂t
= βuz

After taking a time derivative and curl of the Navier Stokes equation and then
inserting the time derivative of the the curl of the induction equation we operate
again taking the curl and multiplying by (B0 · ∇)2 /µρo. Then we dot this equation
with the z unit vector and replace the time derivative of the temperature perturbation
by its respective value above. Rearranging we get a wave equation in the z-velocity
of the fluid parcel.

4(Ω · ∇)2
∂2

∂t2
+

[
(Bo · ∇)2

µρo

]2
∇2 − gαβ

(Bo · ∇)2

µρo
∇2

H

uz = 0

Results:

To better understand these wave equations I assume a plane wave solution of the
form

u = Re
{
ûei(k·r−ωt)

}
After implementing this solution in each of these equations above, I solve for the
angular frequency of the waves and receive a dispersion relation for the various waves.
A dispersion relation relates a waves frequency with its wavelength or in my case the
wave number which is 2π/ wavelength (λ). Using the dispersion relation and making
a few assumptions I can then solve for various wave properties such as period and
wave velocity.

Inertial Wave:
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ω2 =
4(Ω · k)2

k2

From this we see that inertial waves cannot exist perpendicular to the rotation axis in
this plane geometry (Ω · k) = 0. We also see that the speed of propagation is highly
influenced by the angular velocity of rotation which would be expected. Wave velocity
= ω/k. Interestingly we see that the inertial wave does not have a dependence on
the density of the fluid. In the special case where the wave propagates parallel to the
rotation axis

ω = 2
√
Ω TIW =

π√
Ω

vp,IW =
2
√
Ω

k
=

λ
√
Ω

π

Alfven Wave:

ω2 =
(Bo · k)2

µρo

Alfven waves in our geometry of an infinite plane cannot propagate perpendicular
to the background magnetic field. Their angular frequency is proportional to their
wavelength (Larger wavelength, larger angular frequency) and the strength of the
background magnetic field. We also see they have dependence on the density of the
fluid. With higher densities, the slower the angular frequency of the wave which
matches my intuition. In the special case where the wave propagates parallel to the
background magnetic field

ω =
Bok√
µρo

TAW =
2π

√
µρo

Bok
vp,AW =

Bo√
µρo

MC Wave:

ω ≃ k (Bo · k)2

2(Ω · k)µρo

In the special case where the wave travels parallel to the rotation axis and the
magnetic field is parallel to the rotation axis we find.

7



3 DISCUSSION

We see that shorter wavelengths increase the velocity of propagation. We also see
that

ω =
k2B2

o

2Ωµρo
TMC =

4πΩµρo
k2B2

o

vp,MC =
kB2

o

2Ωµρo
=

πB2
o

λΩµρo

the magnetic field strength plays a large role in the frequency, period, and wave
velocity. Increased rotation rate/density will slow the MC wave.

MAC Wave:

ω = ± k (Bo · k)2

2(Ω · k)µρo

(
1 +

gαβρoµ
(
k2
x + k2

y

)
k2 (Bo · k)2

)1/2

= ±ω2
M

ωC

(
1 +

ω2
A

ω2
M

)1/2

Just like our other waves we see that the MAC wave cannot propagate normal to the
background magnetic field or normal to the rotation axis however they can propagate
across field lines. We also see that if the buoyancy forces are neglected the dispersion
relation reduces to that of an MC wave, which we should expect.

3 Discussion

The angular dispersion relations I calculated are an important stepping stone in
realizing and conceptualizing what wave motions are possible within a electrically
conducting fluid. These wave motions are most likely present within the outer core of
the Earth however the dispersion relations derived above would not give an accurate
description due to the simplified nature of the calculation. You can see from the
results that the complexity of these wave motions ramps up quite quickly as more
forces are incorporated in the force balance. My derivation is a relatively simple one,
for example my calculations are diffusionless and do not take into account magnetic or
viscous diffusivity. I also assume an infinite plane geometry which radically simplifies
the problem compared to the actual spherical shell geometry of the outer core. In this
geometry the coriolis effect varies with latitude and the beta plane approximation
can be used to incorporate this effect (Gill, 1982; Pedlosky, 1987). Other geometries
can be used in trying to elucidate wave motions from electrically conducting fluids
in a rotating frame. A popular model is the quasi-geostrophic annulus model which
is essentially a cylindrical shell with a sloped top(Busse (1976) and Soward (1979)).
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4 CONCLUSION

This geometry unveils much more plausible wave motions that could possibly be
present within the outer core.

4 Conclusion

While my calculations may not be directly applicable to the geometry of the outer
core of the Earth, they do reveal important motions that are present in all dynamic
electrically conducting fluids. Incorporating more terms to the force balance and
including different geometries will allow calculations to become more representative to
actual hydromagnetic waves within the outer core of the Earth. Further development
of numerical models of these waves and comparison with geomagnetic observations
data will provide greater evidence for their role in the secular variation of the
geomagnetic field.
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