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1 Functional Calculus

Before we continue on to functional renormalization group methods we must first
develop the formal mathematics and algebra of functionals.

1.1 What is a functional?

A function is a mathematical machine which relates elements between two sets.
The function maps an element x or elements x ≡ {x1, x2, · · · , xn} from the first set
to a single element in the second set.

f(x) 7→ R,C,Z,Rm×n, · · ·

A functional is a mathematical machine which maps a function f(x) or set of
functions f(x) ≡ {f1(x), f2(x), · · · , fn(x)} to a real or complex number.

F [f(x)] 7→ R,C (1.1)

The functional F [f(x)] is dependent on all the values of f at all values of x on the
domain, an infinite number of independent variables!

A simple example

F [f(x)] =

∫ 1

0

f(x)2dx (1.2)

F [x2] =
1

5
F [sin(x)] =

1

2
− sin(2)

4
≈ 0.27268 (1.3)

Consider a function F ({xn}) of a discrete set of N evenly spaced points on the
interval [a, b]. In the limit where the spacing ϵ → 0 and N → ∞, {xn} → f(x) and
F ({xn}) → F [f(x)]. Upon varying {xn} the function will change according to

dF ({xn}) =
N∑

n=1

∂F

∂xn

∣∣∣∣
x0

dxn (1.4)

Noting the definition of an integral,∫
dxf(x) = lim

ϵ→0

N∑
n=1

ϵf(xn) (1.5)
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We rewrite Eq.(1.4)

=
N∑

n=1

ϵ

(
1

ϵ

∂F

∂xn

∣∣∣∣
x0

)
dxn (1.6)

In the limit that ϵ → 0 we introduce the notation dxn → δf(x) to denote the
infinitesimal variation of the function f(x) and Eq.(1.6) becomes

dF [f(x)] =

∫ b

a

dx
δF [f(x)]

δf(x)

∣∣∣∣
f0(x)

δf(x) (1.7)

This tells us that the change in the functional is a sum of terms proportional to the
infinitesimal change δf(x) of the function and the constant of proportionality is the
functional derivative δF/δf(x).

Lets do a quick example illustrating how to calculate the functional derivative using
the functional defined above, namely F [f(x)] =

∫ 1

0
dxf(x)2. First we need to calculate

the change in F [f(x)] due to an infinitesimal change δf(x)

F [f(x) + δf(x)] =

∫ 1

0

[
f(x2) + 2f(x)δf(x) +O(δf(x)2)

]
dx (1.8)

dF [f(x)] = F [f(x) + δf(x)]− F [f(x)] =

∫ 1

0

2f(x)δf(x)dx (1.9)

Comparing with Eq.(1.7) we see that the functional derivative is just

δF [f(x)]

δf(x)
= 2f(x) (1.10)

Unfortunately the functionals we typically deal with aren’t this simple but the
calculation of the functional derivative is the same in every case.

2 Generating Functional Z[J ]

2.1 Probability Theory

A useful analogy between the generating function of probability theory and the
generating functional of quantum field theories warrants a brief appetizer before the
main course.
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2.1 Probability Theory

We consider a continuous random variable ϕ whose outcomes are real numbers i.e.
Sϕ = {−∞ < ϕ < ∞}. With this random variable we associate a normalized
probability distribution p(ϕ)

prob(S) =
∫ ∞

−∞
p(ϕ)dϕ = 1 (2.1)

such that the expectation value of any function f(ϕ) of the random variable ϕ is
given by

⟨f(ϕ)⟩ =
∫ ∞

−∞
f(ϕ)p(ϕ)dϕ (2.2)

The moments of the probability distribution are expectation value of powers of the
random variable. The nth moment is

mn ≡ ⟨ϕn⟩ =
∫ ∞

−∞
ϕnp(ϕ)dϕ (2.3)

The generating function or moment generating function of a distribution is
given by the Fourier transform of the probability density function

z(j) = ⟨ejϕ⟩ =
∫ ∞

−∞
ejϕp(ϕ)dϕ (2.4)

The moments of the distribution can then be obtained via derivatives of the generating
function

mn =

(
∂

∂j

)n

z(j)

∣∣∣∣
j=0

(2.5)

or by expanding z(j) in powers of j.

z(j) =

〈 ∞∑
n=0

jn

n!
ϕn

〉
=

∞∑
n=0

jn

n!
⟨ϕn⟩ (2.6)

We can also define the cumulant generating function whose expansion generates
the cumulants of the distribution defined as

w(j) = ln z(j) =
∞∑
n=1

jn

n!
⟨ϕn⟩c (2.7)

Where ⟨ϕn⟩c ≡ cn are the cumulants of the distribution and can also be obtained via
derivatives of the cumulant generating function

cn =

(
∂

∂j

)n

w(j)

∣∣∣∣
j=0

(2.8)
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2.1 Probability Theory

The relationship between moments and cumulants can be found by equating the two
expressions

z(j) = ew(j) (2.9)

∞∑
n=0

jn

n!
⟨ϕn⟩ = exp

[
∞∑

m=1

jm

m!
⟨ϕm⟩c

]
(2.10)

∞∑
n=0

jn

n!
⟨ϕn⟩ =

∞∏
m=1

∞∑
km=0

[
1

km!

(
jm⟨ϕm⟩c

m!

)km
]

(2.11)

Matching powers of j on both sides leads to the relation

⟨ϕn⟩ =
′∑

{km}

n!
∏
m

1

km!

(
⟨ϕm⟩c
m!

)km

(2.12)

Where the sum is restricted so that
∑

m mkm = n. For example, if we are interested
writing the third moment ⟨ϕ3⟩ in terms of cumulants the sum is constrained to values
of km and m such that ∑

m

mkm = 3 (2.13)

k1 + 2k2 + 3k3 + · · ·+mkm = 3 (2.14)

There are only three possible ways to satisfy this constraint.

{k} =


k1 = 3, k2 = k3 = · · · = km = 0

k1 = k2 = 1, k3 = · · · = km = 0

k3 = 1, k1 = k2 = · · · = km = 0

(2.15)

Eq.(2.12) becomes

⟨ϕ3⟩ = 3!

[
1

3!

⟨ϕ⟩3c
(1!)3

+
1

1!

⟨ϕ⟩c
1!

1

1!

⟨ϕ2⟩c
2!

+
1

1!

⟨ϕ3⟩c
3!

]
(2.16)

⟨ϕ3⟩ = ⟨ϕ⟩3c + 3⟨ϕ⟩c⟨ϕ2⟩c + ⟨ϕ3⟩c (2.17)

By the same method, we also have

⟨ϕ⟩ = ⟨ϕ⟩c
⟨ϕ2⟩ = ⟨ϕ2⟩c + ⟨ϕ⟩2c
⟨ϕ4⟩ = ⟨ϕ4⟩c + 4⟨ϕ3⟩c⟨ϕ⟩c + 6⟨ϕ2⟩c⟨ϕ⟩2c + ⟨ϕ⟩4c

(2.18)
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Eq.(2.12) also has a graphical interpretation. Represent the mth cumulant as a
connected cluster of m points. The nth moment is then obtained by summing all
possible subdivisions of n points into groupings of smaller (connected or disconnected)
clusters. The contribution of each subdivision to the sum is the product of the
connected cumulants that it represents.

3 Time Evolution as a Path Integral

In quantum mechanics and quantum field theory, the time evolution of a quantum
system is described by the unitary time-evolution operator.

U(t) = e−iH(t−t0) (3.1)

Where t0 is some reference time. In many cases, especially in quantum field theory
we would like to calculate the probability amplitude of a particular process to occur
in some time interval ∆t, such as transitions between energy eigenstates or an
interaction between two particles. In the context of field theories we are interested in
the probability amplitude that our field beginning in some configuration ϕi at some
time ti ends up in some configuration ϕf at some later time tf . Setting our reference
time t0 = 0 the amplitude can be expressed as

⟨ϕf (x, tf )|ϕi(x, ti)⟩ = ⟨ϕf (x)|e−iH∆t|ϕi(x)⟩ (3.2)

In the case of scalar fields and adopting the path integral formalism we can also express
this amplitude as a weighted sum over all possible field configurations. Symbolically
we write

⟨ϕf (x)|e−iH∆t|ϕi(x)⟩ =
∫

D[ϕ] exp

[
i

∫ ∆t

0

d4xL
]

(3.3)

in which the functions ϕ(x) which we integrate over are constrained to the particular
configuration ϕi and ϕf at times t = ti and t = tf respectively.

We will be interested in Lagrangian systems which include “source” terms of the
form ∫

d4xF (ϕ)J(x) (3.4)

Where F (ϕ) represents some arbitrary function of the fields and J is the “source”
field. In the context of quantum field theories we can view this time-dependent source
as a means of spontaneous particle creation. In practice this source term will prove
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as a useful construct when we go to write a generating functional of time-ordered
n−point correlation functions in the context of the path integral formulation.

We assume that the source J(x) will be non-zero only in a finite interval t ∈ [T1, T2]
and take t2 > T2, t1 < T1. We then compute the vacuum to vacuum amplitude. That
is, given that our field configuration minimizes the total energy functional at time
t1 → −∞ what is the amplitude that the field will remain in this configuration at
time t2 → ∞? We can compute this quantity by considering general initial ϕa(x) and
final ϕb(x) field configurations.

⟨ϕb(x, t2)|ϕa(x, t1)⟩J =

∫
D[ϕ] exp

[
i

∫ t2

t1

d4xL(ϕ, ∂µϕ, J)
]

(3.5)

Where the J reminds us that we are dealing with a transition in the presence of a
source J . The integration over field configurations can be factored into a product of
transition amplitudes corresponding to before, during, and after the source is turned
on ∫

D[ϕ] = ⟨ϕb|eiH(t2−t1)|ϕa⟩ (3.6)

Using the completeness relation 1 =
∫
D[ϕ] |ϕ⟩ ⟨ϕ|

=

∫
D[ϕc]D[ϕd] ⟨ϕb(x)|e−iH(t2−T2)|ϕd(x)⟩ ⟨ϕd(x, T2)|ϕc(x, T1)⟩J ⟨ϕc(x)|e−iH(T1−t1)|ϕa(x)⟩

(3.7)
Inserting a complete set of energy eigenstates

=
∑
m,n

∫
D[ϕc]D[ϕd] ⟨ϕb(x)|e−iHt2|m⟩ ⟨m|eiHT2|ϕd(x)⟩ ⟨ϕd(x, T2)|ϕc(x, T1)⟩J

× ⟨ϕc(x)|e−iHT1|n⟩ ⟨n|eiHt1 |ϕa(x)⟩
(3.8)

=
∑
m,n

e−i(Emt2−Ent1) ⟨ϕb(x)|m⟩ ⟨n|ϕa(x)⟩
∫
D[ϕc]D[ϕd] ⟨m|eiHT2|ϕd(x)⟩

× ⟨ϕd(x, T2)|ϕc(x, T1)⟩J ⟨ϕc(x)|e−iHT1|n⟩
(3.9)

=
∑
m,n

e−i(Emt2−Ent1)ϕb,m(x)ϕ
∗
a,n(x)

×
∫

D[ϕc]D[ϕd]ϕ
∗
d,m(x, T2) ⟨ϕd(x, T2)|ϕd(x, T1)⟩J ϕc,n(x, T1)

(3.10)
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The above expression gives us a clear interpretation of the amplitude. The integral
in the last line can be thought of as a field ϕc,n(x, T1), that is propagated through
time when the source is acting via ⟨ϕd(x, T2)|ϕc(x, T1)⟩J and then dotted with the
field ϕ∗

d,m(x, T2). The fields ϕc,n(x, T1) and ϕ∗
d,m(x, T2) are only energy eigenstates for

times before and after the source, respectively. Thus, the integral is the probability
amplitude that an energy eigenstate |n⟩ will become an energy eigenstate |m⟩ through
the action of the source J . Now we would like to project out the ground state of
our theory. To do this we can perform a rotation of the time-axis into the imaginary
plane by some small angle −δ (δ > 0). Under such a transformation

t1 → t1 + i|t1|δ (3.11)

t2 → t2 − i|t2|δ (3.12)

in which we have chosen our axis of rotation to lie between t1 and t2. We see that
the exponential term

e−i(Emt2−Ent1) → e−i(Em(t2−i|t2|)−En(t1+i|t1|)) = e−δ(Em|t2|+En|t1|)e−i(Emt2−Ent1) (3.13)

acquires a damping that goes as e−δ(Em|t2|+En|t1|). In the limit which t1 → −∞ and
t2 → ∞ the exponential damping dies the slowest for n = 0 and we are left with

lim
t→∞e−iδ

⟨ϕb(x, t2)|ϕa(x, t1)⟩J =e−iE0(t2−t1)ϕb,0(x)ϕ
∗
a,0(x)

×
∫

D[ϕc]D[ϕd]ϕ
∗
d,0(x, T2) ⟨ϕd(x, T2)|ϕd(x, T1)⟩J ϕc,0(x, T1)

(3.14)
Where t ≡ t2 = −t1. In the limit where T2 and T1 → ±∞ respectively, the integral
reduces to the amplitude that a field configuration of the form ϕ0(x) in the distant
past will remain in the form ϕ0(X) in the distant future. Put another way, it is
the vacuum-to-vacuum transition amplitude in the presence of the source J denoted
as

⟨Ω|Ω⟩J ∝ lim
t→∞e−iδ

⟨ϕb(x, t)|ϕa(x,−t)⟩J (3.15)

Instead of rotating the contour of the time integration we could have also added a
small perturbation −iϵϕ2(x)/2 to our Hamiltonian. First order perturbation theory
tells us that this will shift the energy levels by and amount −iϵ ⟨n|ϕ2|n⟩ /2. Assuming
that the expectation value of ϕ2 increases with energy we see that this has the same
effect as rotating the time axis in projecting out the vacuum state! Subtracting iϵϕ2/2
from the Hamiltonian is the same as adding iϵϕ2/2 to the Lagrangian. Thus,

⟨Ω|Ω⟩J ∝
∫

D[ϕ] exp

[
i

∫ ∞

−∞
dt

{
L(ϕ, ∂µϕ) + F (ϕ(x))J(x) +

1

2
iϵϕ2(x)

}]
(3.16)
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We also want to normalize our result such that when J → 0 the amplitude ⟨Ω|Ω⟩ = 1.
We thus define the following functional

Z[J ] =

∫
D[ϕ] exp

[
i
∫∞
−∞ dt

{
L(ϕ, ∂µϕ) + F (ϕ(x))J(x) + 1

2
iϵϕ2(x)

}]
∫
D[ϕ] exp

[
i
∫∞
−∞ dt

{
L(ϕ, ∂µϕ) + 1

2
iϵϕ2(x)

}] (3.17)

4 Generating Functional: Scalar Field Theory

As a nice example, consider a one-component real scalar field theory in d−dimensions.
Now, rather than a single random variable ϕ, we deal with an infinite dimensional set of
real random variables corresponding to the field amplitudes of the scalar field through-
out d−dimensional spacetime Sϕ(X) = {−∞ < ϕ(X1), ϕ(X2), . . . , ϕ(XN→∞) < ∞}
where each X corresponds to a d−dimensional vector corresponding to a point in
spacetime X ≡ (x1, x2, x3, . . . , xd−1, t). To identify and enumerate field configura-
tions in practice you can imagine discretizing spacetime into Nd points separated by
some uniform distance ϵ (or equivalently transforming spacetime into hypercubes of
volume ϵd) and each labeled by their respective coordinate (x1

i , x
2
j , . . . , x

d−1
k , tl) for

i, j, k, . . . , l = 1, 2, . . . , N . For calculational convenience we can then concatenate
these indicies in a super-index n running from n = 1, . . . , Nd. In the limiting process
where ϵ → 0 and N → ∞ we obtain our continuous quantum field ϕ(X). You can
imagine on the discretized lattice each field configuration could then be identified by
summing over all possible values of the field at each of the Nd lattice points iteratively.
The limiting factor of this type of computation comes down to available memory and
computing power. But, for a sufficiently dense lattice, these types of computations
can be done rather efficiently and can produce useful physical results.

Given that the field amplitudes are continuous random variables, we can associate
a joint probability distribution representing the probability density of a field con-
figuration in a volume element dNϕ(X) =

∏N
i=1 dϕ(Xi) around the point ϕ(X) =

{ϕ(X1), ϕ(X2), . . . , ϕ(XN→∞)}. In the context of quantum mechanics, we associate
a distribution of probability amplitudes P (ϕ(X)) in field configuration space. Given
some operator O(ϕ(X)) that is a function of the field (i.e. field configurations) we
can define its operator average or expectation value as

⟨O⟩ = N
∫

D[ϕ]P (ϕ)O(ϕ) (4.1)

The main goal of any quantum field theory is to produce n−point correlation func-
tions.
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4.1 Free Scalar Field

The analogue to generating functional of disconnected correlators is defined as

Z[J ] ≡
∫

D[Φ] exp

[
i

∫
d4x [L(Φ, ∂µΦ) + J(x)Φ(x)]

]
(4.2)

The n-point correlation function of the theory can obtained via n functional derivatives
of Z[Φ].

4.1 Free Scalar Field

Take, for example, the free Klein-Gordon theory in which the generating functional is
given by

Z[J ] =

∫
D[ϕ] exp

[
i

∫
d4x

[
1

2
(∂µϕ)

2 − 1

2
m2ϕ2 + Jϕ

]]
(4.3)

The two-point Green’s function is then given by

⟨0|T{ϕ(x1)ϕ(x2)}|0⟩ ≡ ⟨ϕϕ⟩ = 1

Z[0]

[
−i

δ

δJ(x1)

] [
−i

δ

δJ(x2)

]
Z[J ]

∣∣∣∣
J=0

(4.4)

In the free theory the above expression can be calculated explicitly, we integrate our
Lagrangian density by parts1 to expose the Klein-Gordon operator

Z[J ] =

∫
D[ϕ] exp

[
i

∫
d4x

[
−1

2
ϕ(∂2

µ +m2)ϕ+ Jϕ

]]
(4.5)

And then perform a redefinition of the field ϕ → ϕ′ + (∂2 +m2)−1J . Plugging this
into our generating functional

Z[J ] = J
∫

D[ϕ′] exp

[
i

∫
d4x

[
−1

2
ϕ′(∂2 +m2)ϕ′ +

1

2
J(∂2 +m2)−1J

]]
(4.6)

Where J is the Jacobian of the transformation. The Jacobian is trivial to compute
as long as one remembers that

∫
Dϕ ≈ lim

i→∞

∏
i

∫
dϕ(xi) →

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∂ϕ(x1)

∂ϕ′(x1)

∂ϕ(x1)

∂ϕ′(x2)
· · · ∂ϕ(x1)

∂ϕ′(xn)
∂ϕ(x2)

∂ϕ′(x1)

. . .
...

...
. . .

...
∂ϕ(xn)

∂ϕ′(x1)

∂ϕ(xn)

∂ϕ′(x2)
· · · ∂ϕ(xn)

∂ϕ′(xn)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
∏
i

∫
dϕ′(xi) (4.7)

1And assume our real scalar field vanishes at infinity
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4.1 Free Scalar Field

For our transformation, or in general for translations of the fields, the Jacobian matrix
is equivalent to the n-dimensional identity matrix

∂ϕ(xi)

∂ϕ′(xj)
=

∂

∂ϕ′(xj)

[
ϕ′(xi) + (∂2 +m2)−1J

]
=

∂ϕ′(xi)

∂ϕ′(xj)
= δij (4.8)

And thus, the Jacobian for the transformation is 1 due to the fact that

det[1n×n] = 1 (4.9)

Thus, we see that our generating functional can be rewritten as

Z[J ] =

∫
D[ϕ′] exp

[
−i

∫
d4x

1

2
ϕ′(∂2 +m2)ϕ′

]
exp

[
i

∫
d4x

1

2
J(∂2 +m2)−1J

]
(4.10)

= Z[0] exp

[
i

2

∫
d4xJ(∂2 +m2)−1J

]
(4.11)

Using the fact that (∂2 + m2)−1 is just the Green’s function of the Klein-Gordon
operator DF

= Z[0] exp

[
−1

2

∫
d4xd4yJ(x)DF (x− y)J(y)

]
(4.12)

Plugging into our expression for the two-point function

⟨ϕϕ⟩ = − δ

δJ(x1)

δ

δJ(x2)
exp

[
−1

2

∫
d4xd4yJ(x)DF (x− y)J(y)

]∣∣∣∣
J=0

(4.13)

Explicitly we have

= − δ

δJ(x1)

[
−1

2

∫
d4xd4yδ(4)(x− x2)DF (x− y)J(y)−

∫
d4xd4yδ(4)(y − x2)J(x)DF (x− y)

]
× exp

[
−1

2

∫
d4xd4yJ(x)DF (x− y)J(y)

]∣∣∣∣
J=0

(4.14)

=
δ

δJ(x1)

[
1

2

∫
d4yDF (x2 − y)J(y) +

1

2

∫
d4xJ(x)DF (x− x2)

]
× exp

[
−1

2

∫
d4xd4yJ(x)DF (x− y)J(y)

]∣∣∣∣
J=0

(4.15)

We only need to find terms which do not contain J as we are to set these terms equal
to zero anyway. The only terms which survive are the terms in brackets from the
first line of Eq.(4.15) leaving

⟨ϕϕ⟩ = 1

2
DF (x2 − x1) +

1

2
DF (x2 − x1) = DF (x2 − x1) (4.16)
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Likewise we can also compute the four-point function, but first we will concatenate
our notation for calculational brevity. Let the arguments be denoted as subscripts,
ϕ1 ≡ ϕ(x1), Dxy ≡ DF (x − y), Jx ≡ J(x), etc. And let any repeated indices be
integrated over, the four-point function is given by

⟨T{ϕ1ϕ2ϕ3ϕ4}⟩ = (−i)4
δ

δJ1

δ

δJ2

δ

δJ3

δ

δJ4
exp

[
−1

2
JxDxyJy

]∣∣∣∣
J=0

=
δ

δJ1

δ

δJ2

δ

δJ3

[
−1

2
D4yJy −

1

2
JxDx4

]
exp

[
−1

2
JxDxyJy

]∣∣∣∣
J=0

=
δ

δJ1

δ

δJ2

δ

δJ3
[−JxDx4] exp

[
−1

2
JxDxyJy

]∣∣∣∣
J=0

=
δ

δJ1
[D34JxDx2 +D24JyDy3 + JxDx4D23] exp

[
−1

2
JxDxyJy

]∣∣∣∣
J=0

= D34D12 +D24D13 +D14D23

(4.17)
Where in the first term of the third line we rename y → x and use the fact that
D4x = Dx4.

In the free theory, the functional derivatives act on the generating functional and
produce all combinations of connections between pairs of n−points to form the
n−point correlation function. While the above was a convenient demonstration of
how to explicitly calculate the n−point correlation function, it is only useful for
the free-theory in which we can express the generating functional in the form of
Eq.(4.13). We could have also calculated the form of the two point function directly
from Eq.(4.4)

⟨ϕϕ⟩ = 1

Z[0]

[
−i

δ

δJ(x1)

] [
−i

δ

δJ(x2)

] ∫
D[ϕ] exp

[
i

∫
d4x

[
−1

2
ϕ(∂2

µ +m2)ϕ+ Jϕ

]]∣∣∣∣
J=0

(4.18)

⟨ϕϕ⟩ =
∫
D[ϕ]ϕ(x2)ϕ(x1) exp

[
i
∫
d4x

[
−1

2
ϕ(∂2

µ +m2)ϕ
]]∫

D[ϕ] exp
[
i
∫
d4x

[
−1

2
ϕ(∂2

µ +m2)ϕ
]] (4.19)

5 Functional Methods in QFT

5.1 Dyson-Schwinger Equations

In quantum field theories all physical content is stored in correlation functions.

⟨ϕi(x1)ϕj(x2) · · ·ϕk(xn)⟩ =
∫

Dϕi(x1)ϕj(x2) · · ·ϕk(xn)e
−S[ϕi] (5.1)
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5.1 Dyson-Schwinger Equations

The ‘usual’ calculation of n-point correlation functions involves a perturbative expan-
sion powers of an infinitesimal parameter. Of course this procedure fails when we
have to deal with couplings which are no longer ≪ 1. In these cases we need to turn
to non-perturbative methods to calculate correlation functions. One such method
resulting in a non-linear first-order functional differential equation was developed by
Dyson and Schwinger. The core entity in these calculations is the effective action
Γ[Φi]. The effective action is defined as

Γ[Φ] ≡ sup
J

(∫
[−W [J ] + ΦiJi]

)
(5.2)

Where the Ji’s denote sources for the fields Φi and W [J ] is the generating functional
of connected correlators. The generating functional is related to the bare action S[ϕ]
via the path integral

Z[J ] ≡ eW [J ] =

∫
D[ϕ]e−S[ϕ]+ϕjJj (5.3)

All n-point correlation functions can be generated by taking functional derivatives of
the generating functional with respect to the sources.

⟨ϕi(x1)ϕj(x2) · · ·ϕk(xn)⟩ =
1

Z[0]

[
δnZ[J ]

δJi(x1)δJj(x2) · · · δJk(xn)

]
J=0

(5.4)

Where ϕi denotes the quantum fields. At Jsup the variation of the effective action
must be zero and thus,

δΓsup

δJj(x)
= 0 =

δ

δJj(x)

(∫
−W [J ] + ΦiJi

)
(5.5)

δW [J ]

δJj(x)
= Φiδij (5.6)

But,
δW [J ]

δJj(x)
=

1

Z[J ]

δZ[J ]

δJj(x)
= ⟨ϕ(x)⟩J (5.7)

Thus the average field Φ is given by

Φi ≡ ⟨ϕi⟩J =
δW

δJi
= Z[J ]−1

∫
D[ϕ]ϕie

−S[ϕ]+ϕiJi (5.8)

Noting that

δΓsup[Φ]

δΦi(x)
= −

∫
δW

δJj(y)

δJj(y)

δΦi(x)
dy +

∫
δΦk(y)

δΦi(x)
Jkdy +

∫
δJl(y)

δΦi(x)
Φldy (5.9)

12



5.2 Functional Renormalization Group Flows

= −Φjδji + Jkδki + Φlδli = Ji(x) (5.10)

We can now write down a functional differential equation for the effective action
considering Eq.(5.3)

e−Γ[Φ] =

∫
D[ϕ] exp

[
−S[ϕ+ Φ] +

δΓ[Φ]

δΦi

ϕi

]
(5.11)

An exact solution for Γ[Φ] is difficult to obtain but we can perform a vertex expansion
of Γ[Φ]

Γ[Φ] =
∞∑
n=0

1

N i1···in

∑
i1···in

∫
dDx1 · · · dDxnΓ

i1···inΦi1(x1) · · ·Φin(xn) (5.12)

Where N is the corresponding symmetry factor and Γi1···in correspond to the one-
particle irreducible proper vertices. Inserting this back into Eq.(5.11) and comparing
the coefficients of the field monomials results in an infinite tower of coupled integro-
differential equations for Γin···in , these are the Dyson-Schwinger equations.

5.2 Functional Renormalization Group Flows

The core entity in functional renormalization group is the scale dependent effec-
tive average action Γk[Φi] where k is the scaling parameter. The effective action
interpolates between a microscopic UV description for the bare action at some scale
k = Λ and a macroscopic description at low energies described by the full quantum
action, with k=0. The scale parameter k acts as an infrared regulator suppressing
any quantum fluctuations with momentum less than k. This allows us to study
how the parameters of our theory ‘flow’ from high energies to low energies and vice
versa. Below our goal is to construct an equation to describe the flow of the effective
average action for bosonic degrees of freedom. Generalizations to fermionic and
gauge degrees of freedom will be discussed in later sections.

We now define an IR regulated generating functional

eWk[J ] ≡ Zk[J ] = e−∆Sk[ δ
δJ ]Z[J ] =

∫
D[ϕ]e−S[ϕ]−∆Sk[ϕ]+

∫
Jiϕi (5.13)

Where

∆Sk[ϕ] =
1

2
ϕiR

ij
k ϕj =

1

2

∫
dDq

(2π)D
dDq′

(2π)D
Rab

k (q, q′)ϕa(q)ϕb(q
′) (5.14)
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5.2 Functional Renormalization Group Flows

With R(q, q′) ≡ R(q)δD(q − q)

=
1

2

∫
dDq

(2π)D
Rab

k (q)ϕa(q)ϕb(−q) (5.15)

Where the regulator function Rk must satisfy the following properties

1. limq2/k2→0Rk > 0 (implements IR regularization for the path integral)

2. limk2/q2→0Rk = 0 (regulator must vanish for k → 0)

3. limk→Λ→∞Rk = ∞ (functional integral is then dominated by the stationary
point of the action)

There are many regulator functions which satisfy these requirements. A detailed
discussion is coming...

The effective average action is then defined as

Γk[Φ] = −Wk[J ] +

∫
x/p

[
JiΦi −

1

2
ΦiR

ij
k Φj

]
(5.16)

The quantum equations of motion can also be obtained by taking functional derivatives
with respect to the fields

δΓk[Φi]

δΦi(x)
= −

∫
δWk

δJj(y)

δJj(y)

δΦi(x)
dy +

∫
δΦk(y)

δΦi(x)
Jkdy +

∫
δJl(y)

δΦi(x)
Φldy

− 1

2

∫
δ(Φm(y)Φm(y))

δΦi(x)
Rmm

k (y)− 1

2

∫
δ(Φp(y)Φq(y))

δΦi(x)
Rpq

k (y)

(5.17)

Where p ̸= q

= δ(x− y)

[
−Φjδji + Jkδki + Φlδli − δimΦimR− 1

2
(δipΦq + δiqΦp)R

]
(5.18)

For a single scalar field this reduces to

δΓk[Φ]

δΦ(x)
= J(x)− Φ(x)Rk(x) (5.19)

or

J(x) =
δΓk[Φ]

δΦ(x)
+ Φ(x)Rk(x) (5.20)
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5.2 Functional Renormalization Group Flows

Thus,
δJ(x)

δΦ(y)
=

δ2Γk[Φ]

δΦ(x)δΦ(y)
+

δΦ(x)

δΦ(y)
Rk(x) (5.21)

=
δ2Γk[Φ]

δΦ(x)δΦ(y)
+ δ(x− y)Rk(x) (5.22)

But, from Eq.(5.8)
δΦ(x)

δJ(z)
=

δ2Wk[J ]

δJ(x)δJ(z)
≡ Gk(x− z) (5.23)

Where Gk(x− z) is the connected correlator

Gk(p) =
δ2Wk

δJδJ
= ⟨ϕ(−p)ϕ(p)⟩ − ⟨ϕ(−p)⟩⟨ϕ(p)⟩ (5.24)

Using these relations we have the following identity

δ(x− y) =
δJ(x)

δJ(y)
=

∫
ddy

δJ(x)

δΦ(z)

δΦ(z)

δJ(y)
=

∫
ddy

[
δ2Γk[Φ]

δΦ(x)δΦ(z)
+Rk(z)

]
Gk(z − y)

(5.25)
Introducing the notation

Γ
(n)
k [ϕ] =

δnΓk[Φ]

δΦ(x1)δΦ(x2) · · · δΦ(xn)
(5.26)

As a matrix equation we have

1 = [Γ
(2)
k +Rk]Gk (5.27)

Or
[Γ

(2)
k +Rk]

−1 = Gk (5.28)

Taking the derivative of Wk[Ji] with respect to t at Jsup for a fixed source (k-
independent)

∂tWk = k
d

dk
lnZk = k

1

Zk

d

dk
Zk = −∂t

∫
D[ϕ]∆Sk[ϕ] = −∂t⟨∆Sk[ϕ]⟩ (5.29)

= −1

2

∫
D[ϕ]

∫
ddq

(2π)d
∂tR

ab
k ϕa(−q)ϕb(q) (5.30)

= −1

2

∫
ddq

(2π)d
∂tR

ab
k

∫
D[ϕ]ϕa(−q)ϕb(q) (5.31)
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5.2 Functional Renormalization Group Flows

= −1

2

∫
ddq

(2π)d
∂tR

ab
k ⟨ϕa(−q)ϕb(q)⟩ (5.32)

From Eq.(5.24)

= −1

2

∫
ddq

(2π)d
∂tRk

[
δ2Wk[J ]

δJa(−q)δJb(q)
+ ⟨ϕa(−q)⟩⟨ϕb(q)⟩

]
(5.33)

= −1

2

∫
ddq

(2π)d
[
∂tRkGk + Φa(−q)∂tR

ab
k Φb(q)

]
(5.34)

To put everything together we take the scale-derivative of Eq.(5.16)

∂tΓk = −∂tWk +

∫
p

[
∂t(JiΦi)−

1

2
Φa(∂tR

ab
k )Φb

]
(5.35)

∂tΓk = −∂tWk −
∫
p

1

2
Φa(∂tR

ab
k )Φb (5.36)

∂tΓk =

∫
ddq

(2π)d

[
1

2
∂tRkGk +

1

2
Φa∂t(R

ab
k )Φb −

1

2
Φa(∂tR

ab
k )Φb

]
(5.37)

∂tΓ =
1

2

∫
ddq

(2π)d
∂tRkGk (5.38)

Using Eq.(5.28) we can rewrite Gk

∂tΓk =
1

2

∫
q

∂tRk

[
Γ
(2)
k +Rk

]−1

(5.39)

This functional differential equation can be written independent of a basis as

∂kΓk[Φ] =
1

2

[
(Γk[Φ] +R−1

k

]ji
∂kR

ij
k (5.40)

∂kΓk[Φ] =
1

2
Tr

[
(Γk[Φ] +Rk)

−1∂kRk

]
(5.41)

The flow equations for mass terms, coupling constants, wave-function renormalization,
etc. are extracted from the flow equations for the n-point correlation functions.
To obtain them we just take functional derivatives with respect to the fields. In
doing so we end up with another infinite tower of coupled functional differential
equations.
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To express in a particular representation we insert the complete set of states, for
example in position space the trace is written as

Tr[Ô] =
∑
i

⟨Ψi|Ô|Ψi⟩ =
∑
i

∫
ddxddy ⟨Ψi|x⟩ ⟨x|Ô|y⟩ ⟨y|Ψi⟩ (5.42)

=

∫
ddxddy ⟨x|Ô|y⟩

∑
i

Ψ∗
i (x)Ψi(y) =

∫
ddxddy ⟨x|Ô|y⟩ δd(x− y) =

∫
ddx ⟨x|Ô|x⟩

(5.43)

≡
∫

ddxÔ(x) (5.44)

Sometimes it is convenient to work in a momentum basis, performing a Fourier
transform from the position-basis∫

ddx ⟨x|Ô|x⟩ =
∫

ddxddpddp′ ⟨x|p⟩ ⟨p|Ô|p′⟩ ⟨p′|x⟩ (5.45)

=
1

(2π)d

∫
ddxddpddp′ei(p−p′)·x ⟨p|Ô|p′⟩ (5.46)

=
1

(2π)d

∫
ddpddp′(2π)dδd(p− p′) ⟨p|Ô|p′⟩ =

∫
ddp ⟨p|Ô|p⟩ (5.47)

≡
∫

ddpÔ(p) (5.48)

6 O(1) Scalar field theory

6.1 ϕ4 theory β-functions in d-dimensions

The effective average action of an O(1) scalar field theory with potential V (Φ2) is
given by

Γk[Φ] =

∫
ddx

[
1

2
∂µΦ(x)∂µΦ(x) + Vk(Φ

2)

]
(6.1)

Introducing the notation V ′
k(Φ

2) ≡ δVk(Φ
2)/δΦ2 we have

Γ
(2)
k [Φ] = −∂2 + 2V ′

k(Φ
2) + 4Φ2(x)V ′′(Φ2) (6.2)

Plugging our result into the Wetterich equation we have

∂tΓk[Φ] =
1

2
Tr

[
∂tRk

[−∂2 + 2V ′
k + 4Φ2(x)V ′′ +Rk]

]
(6.3)
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6.1 ϕ4 theory β-functions in d-dimensions

The trace involves integration of position and momentum space

∂tΓk[Φ] =
1

2

∫
ddx

∫
ddp

(2π)4

[
∂tRk

[p2 + 2V ′
k + 4Φ2(x)V ′′ +Rk]

]
(6.4)

=
1

(4π)d/2Γ(d/2)

∫
ddx

∫ ∞

0

dp̃p̃d/2−1

[
∂tRk

[p̃2 + 2V ′
k + 4Φ2(x)V ′′ +Rk]

]
(6.5)

Where Γ(d/2) refers to Euler’s gamma function and p̃ ≡ |p|. Plugging in Litim’s
regulator noting that ∂tR

L
k (p) = 2k2Θ(k2 − p2)

∂tΓk[Φ] =
2k2

(4π)d/2Γ(d/2)

∫
ddx

∫ k2

0

dp̃p̃d/2−1

[
1

k2 + 2V ′
k + 4Φ2(x)V ′′

]
(6.6)

∂tΓk[Φ] =
2

d

1

(4π)d/2Γ(d/2)

[
1

[k2 + 2V ′
k + 4Φ2(x)V ′′]

]
(6.7)

If we consider stationary field configurations the kinetic term drops out and we are
left with

∂tVk(Φ
2) =

2

d

1

(4π)d/2Γ(d/2)

[
1

[k2 + 2V ′
k + 4Φ2(x)V ′′]

]
(6.8)

To analyze the problem further we need to make an explicit choice for the potential.
One choice is to take a Taylor expansion in powers of ρ ≡ Φ2

V (ρ) =
N∑

n=1

λ2nρ
n (6.9)

The couplings can by extracted from the exact renormalization group flow equation
via

λ2n =
1

n!

∂nV

∂ρn

∣∣∣∣
ρ=0

(6.10)

Likewise, the β-functions can then be obtained via

β2n = ∂tλ2n =
1

n!

∂n

∂ρn
∂tV

∣∣∣∣
ρ=0

(6.11)

Now we redefine the couplings and fields to obtain the dimensionless β-functions

Φ̄ = k
2−d
2 Φ (6.12)

λ̄ = k(d−2)n−dλ2n (6.13)
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6.2 Fixed points

∂tλ̄2n = ((d− 2)n− d)λ̄2n + k(d−2)n−dβ2n (6.14)

V̄k(ρ̄) = k−dVk(ρ) (6.15)

Eq.(6.8) becomes

∂tV̄k = −dV̄ + (d− 2)ρV̄ ′ +
2

d

1

(4π)d/2Γ(d/2)

[
1

1 + 2V̄ ′
k + 4ρV̄ ′′

]
(6.16)

The equation above is the basis for what is done in scalarFRG.py. Obtaining the β-
functions for the dimensionless couplings is now a matter of applying Eq.(6.11).

6.2 Fixed points

Ultimately the β-functions allow a way to non-pertubatively analyze the UV behavior
of our theory. Of particular interest are are stationary or fixed points i.e. positions
in theory space in which all β-functions are zero. The trivial solution corresponding
to λ2 = λ4 = · · · = λ2n = 0 is called a Gaussian fixed point. These fixed points
correspond to a free theory with no interactions. Non-trivial solutions, corresponding
to renormalizable interacting theories, are called Wilson-Fisher fixed points and are
the main motivation in the computing the β−functions.

7 Flow Plots from scalarFRG.py

With scalarFRG I am able to compute the β-functions up to an arbitrary number of
terms in the expansion of the potential. For the flow plots I’ve just expanded up to
two terms, if more terms are required it would be necessary to scan the parameters
space of all included couplings in order to obtain a complete picture of the flows.
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7.1 d = 1, n = 2

7.1 d = 1, n = 2

Figure 1: Flow for d = 1, n = 2
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7.2 d = 2, n = 2

7.2 d = 2, n = 2

Figure 2: Flow for d = 1, n = 2
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7.3 d = 3, n = 2

7.3 d = 3, n = 2

Figure 3: Flow for d = 1, n = 2
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7.4 d = 4, n = 2

7.4 d = 4, n = 2

Figure 4: Flow for d = 1, n = 2

8 Detailed calculation

Truncating the potential at n = 2 we have the following effective average action

Γk[Φ] =

∫
ddx

[
1

2
zkgµν∂

µΦ(x)∂νΦ(x) +
1

2
m2

kΦ
2(x) +

λk

4!
Φ4(x)

]
(8.1)

Taking a scale derivative of the average effective action yields

∂tΓk[ϕ] =

∫
ddx

[
1

2
(∂tzk)∂

µΦ(x)∂µΦ(x) +
1

2
(∂tm

2
k)Φ

2(x) +
(∂tλk)

4!
Φ4(x)

]
(8.2)

We can project out the coupling β-functions via the projecting operator

Π(l,m)∂tΓk[Φ] =
1

l!

1

m!
∂l
Φc
∂m
q

(
∂tΓk[Φce

iq·x]
)∣∣∣∣

Φc=0,q=0

(8.3)
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For example, to project out ∂tzk we will need Π(2,2) going term by term for explicit-
ness

−
∫

ddx
1

2!

1

2!

1

2
∂tzk∂

2
Φc
∂2
q

[
∂µ(Φce

iq·x)∂µ(Φce
iq·x)

] ∣∣∣∣
Φc=0,q=0

(8.4)

=
−(i)2

8

∫
ddx∂tzk∂

2
Φc
∂2
q

[
q2Φ2

ce
2iq·x] ∣∣∣∣

Φc=0,q=0

(8.5)

=
1

8

∫
ddx∂tzk∂

2
Φc

[
2Φ2

ce
2iq·x + 8ixqΦ2

ce
2iq·x + (2ix)2q2Φ2

ce
2iq·x] ∣∣∣∣

Φc=0,q=0

(8.6)

=
1

8

∫
ddx∂tzk∂

2
Φc

[
2Φ2

c

] ∣∣∣∣
Φc=0

(8.7)

=
1

2

∫
ddx∂tzk (8.8)

For the next term we have∫
ddx

1

2!

1

2!

1

2
∂tm

2
k∂

2
Φc
∂2
q

[
(Φ2

ce
2iq·x)

] ∣∣∣∣
Φc=0,q=0

=
1

8

∫
ddx∂tm

2
k∂

2
Φc
[Φ2

c(2ix)
2]

∣∣∣∣
Φc=0

(8.9)

= −
∫

ddxx2∂tm
2
k (8.10)

And finally for the last term∫
ddx

1

2!

1

2!

1

4!
∂tλk∂

2
q∂

2
Φc

[
Φ4

ce
4iq·x] ∣∣∣∣

Φc=0,q=0

(8.11)

=
1

96

∫
ddx∂tλk∂

2
q

[
(4 · 3)Φ2

ce
4iq·x] ∣∣∣∣

Φc=0,q=0

= 0 (8.12)

Putting it all together we find

Π(2,2)∂tΓk[Φ] =

∫
ddx

[
1

2
∂tzk − x2∂tm

2
k

]
(8.13)

The other parameters can be found easily by acting with Π(2,0) and Π(4,0), we are left
with the following three results

Π(2,2)∂tΓk[Φ] =

∫
ddx

[
1

2
∂tzk − x2∂tm

2
k

]
(8.14)
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Π(2,0)∂tΓk[Φ] =
1

2

∫
ddx∂tm

2
k (8.15)

Π(4,0)∂tΓk[Φ] =
1

4!

∫
ddx∂tλk (8.16)

Now we look to the RHS of the Wetterich equation

1

2
Tr

[
(Γ

(2)
k [Φ] +Rk)

−1∂tRk

]
= (8.17)

First we need to compute Γ
(2)
k [Φ]

δ2Γk

δΦ(y)δΦ(z)
=

∫
ddx

{
δ2

δΦ(y)δΦ(z)

[
1

2
zk∂

µΦ(x)∂µΦ(x)

]
+

δ2

δΦ(y)δΦ(z)

[
1

2
m2

kΦ
2(x)

]
+

δ2

δΦ(y)δΦ(z)

[
λk

4!
Φ4(x)

]}
(8.18)

=

∫
ddx

{
1

2

δ2

δΦ(y)δΦ(z)

[
Φ(x)

(
−zk∂

2 +m2
k

)
Φ(x)

]
+

1

4!
λk

δ2

δΦ(y)δΦ(z)
Φ4(x)

}
(8.19)

For the first term I have integrated by parts (with the assumption that our field Φ(x)
vanishes at the boundaries),∫

ddx[∂µΦ∂µΦ] = −
∫

ddxΦ∂2Φ (8.20)

Defining ∆ ≡ −zk∂
2 +m2

k the first term becomes

1

2

δ

δΦ(y)

[
δ

δΦ(z)
[Φ(x)]∆Φ(x) + Φ(x)∆

δ

δΦ(z)
[Φ(x)]

]
(8.21)

=
1

2

[
∆

δ

δΦ(y)
Φ(z) +

δ

δΦ(y)
Φ(z)∆

]
(8.22)

= ∆ (8.23)

The second term gives

1

4!
λk

δ2

δΦ(y)δΦ(z)
Φ4(x) =

4 · 3
4!

λkΦ
2(x) =

1

2
λkΦ

2(x) (8.24)
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Putting this all together we are left with

Γ
(2)
k [Φ] = −zk∂

2 +m2
k +

1

2
λkΦ

2(x) (8.25)

Now we can plug this into the scale evolution Eq.(??)

∂tΓk[Φ] =
1

2
Tr

 1[
−zk∂2 +m2

k +
λk

2
Φ2(x) +Rk

]∂tRk

 (8.26)

Now we define ∆̃ ≡ −zk∂
2 +m2

k +Rk

=
1

2
Tr

 1

∆̃

[
1 +

1

2
∆̃−1λkΦ2(x)

]∂tRk

 (8.27)

Now I can make use of the following operator expansion2

[
1 + ∆̃−1λkΦ

2(x)
]−1

=
∞∑
k=0

(−1)k

2k

[
∆̃−1λkΦ

2(x)
]k

(8.28)

Truncating all operators above Φ4 we are left with

=
1

2
Tr

[
∆̃−1

{
1 − 1

2
∆̃−1λkΦ

2(x) +
1

4

(
∆̃−1λkΦ

2(x)
)2

+O(Φ6)

}
∂tRk

]
(8.29)

=
1

2
Tr

[{
∆̃−1 − 1

2
(∆̃−1)2λkΦ

2(x) +
1

4
(∆̃−1)3λ2

kΦ
4(x)

}
∂tRk

]
(8.30)

Expanding the trace in momentum space (∂2 ⇝ i2p2 = −p2)

∂tΓk[Φ] =
1

2

1

(2π)d

∫
ddx

∫
ddp

[{ (
zkp

2 +m2
k +Rk(p)

)−1

− λk

2

(
zkp

2 +m2
k +Rk(p)

)−2 ⟨p|ΦΦ|p⟩

+
λ2
k

4

(
zkp

2 +m2
k +Rk(p)

)−3 ⟨p|ΦΦΦΦ|p⟩
}
∂tRk

] (8.31)

2For this expansion to be valid the eigenvalues λi of the operator ∆̃−1λkΦ
2 must satisfy the

condition |λi| < 1.
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=
1

2

1

(2π)d

∫
ddx

∫
ddp

[{ (
zkp

2 +m2
k +Rk(p)

)−1

− λk

2

(
zkp

2 +m2
k +Rk(p)

)−2
Φ2(p)

+
λ2
k

4

(
zkp

2 +m2
k +Rk(p)

)−3
Φ4(p)

}
∂tRk

] (8.32)

Applying the same projection operators (Eq.(8.3)) to this expression we are left
with

Π(2,2)∂tΓk[Φ] =
1

(2π)d

∫
ddx

∫
ddp

λk

2

[(
zkp

2 +m2
k +Rk

)−2
x2∂tRk

]
(8.33)

Π(2,0)∂tΓk[Φ] = − 1

(2π)d

∫
ddx

∫
ddp

λk

4

[
(zkp

2 +m2
k +Rk)

−2∂tRk

]
(8.34)

Π(4,0)∂tΓk[Φ] =
1

(2π)d

∫
ddx

∫
ddp

λ2
k

8

[
(zkp

2 +m2
k +Rk)

−3∂tRk

]
(8.35)

Equating with Eqs.(8.14)(8.15)(8.16) we find the following three relations

1

2
∂tzk − x2∂tm

2
k =

1

(2π)d

∫
ddp

λk

2

[(
zkp

2 +m2
k +Rk

)−2
x2∂tRk

]
(8.36)

1

2
∂tm

2
k = − 1

(2π)d

∫
ddp

λk

4

[
(zkp

2 +m2
k +Rk)

−2∂tRk

]
(8.37)

1

4!
∂tλk =

1

(2π)d

∫
ddp

λ2
k

8

[
(zkp

2 +m2
k +Rk)

−3∂tRk

]
(8.38)

Plugging the result for ∂tmk in Eq.(8.34) into Eq.(8.33) we see that

∂tzk = 0 (8.39)

To make further progress we need to choose a regulator function Rk. To start we will
look at the optimized Litim regulator [2]

RL
k (p) = zk

(
k2 − p2

)
Θ
(
k2 − p2

)
(8.40)

Where Θ(x) is the Heaviside step function. Thus,

∂tR
L
k = 2zkk

2Θ(k2 − p2) (8.41)
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Plugging this regulator back in to Eq.(8.37)

∂tm
2
k = −λk

2

1

(2π)d

∫
ddp

[(
zkp

2 +m2
k + zk(k

2 − p2)Θ(k2 − p2)
)−2

2zkk
2Θ(k2 − p2)

]
(8.42)

= − λk

(2π)d

∫
p2<k2

ddp
[
zkp

2 +m2
k + zk(k

2 − p2)
]−2

zkk
2 (8.43)

= − λk

(2π)d

∫
p2<k2

ddp

[
zkk

2

(m2
k + zkk2)2

]
(8.44)

Now the problem has been boiled down to computing the volume of d-dimensional
sphere of radius k

Ωd(k) =
πd/2

Γ
(
d
2
+ 1

)kd (8.45)

Where Γ(x) = (x− 1)! is the Euler gamma-function. Note

Γ(n+
1

2
) =

(2n)!

4nn!

√
π for n ∈ Z∗ (8.46)

Thus we find

= − zkλk

(2π)d

[
k2

(m2
k + zkk2)2

]
πd/2

Γ
(
d
2
+ 1

)kd (8.47)

Our second flow equation is then given by

∂tm
2
k =

−λkzk

(2
√
π)dΓ

(
d
2
+ 1

) k2+d

(m2
k + zkk2)2

(8.48)

Plugging the regulator into Eq.(8.38) gives

∂tλk =
3λ2

k

(2π)d

∫
ddp

[(
zkp

2 +m2
k + zk(k

2 − p2)Θ(k2 − p2)
)−3

2zkk
2Θ(k2 − p2)

]
(8.49)

=
6λ2

k

(2π)d

∫
p2<k2

ddp
[(
zkp

2 +m2
k + zk(k

2 − p2)
)−3

zkk
2
]

(8.50)

=
6λ2

k

(2π)d

∫
p2<k2

ddp

[
zkk

2

(m2
k + zkk2)

3

]
(8.51)

We are left with our final flow equation

∂tλk =
6λ2

kzk

(2
√
π)dΓ

(
d
2
+ 1

) k2+d

(m2
k + zkk2)3

(8.52)
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We can perform a redefinition of the couplings to obtain dimensionless β-functions

λ̄k = kd−4λk −→ λk = λ̄kk
4−d (8.53)

m̄2
k = k−2m2

k −→ m2
k = m̄2

kk
2 (8.54)

We have

∂tλk = k
d

dk
(λ̄kk

4−d) = k

(
(4− d)k3−dλ̄k + k4−d d

dk
λ̄k

)
= k4k−d

(
(4− d)λ̄k + k

d

dk
λ̄k

)
(8.55)

6λ2
kzk

(2
√
π)dΓ

(
d
2
+ 1

) k2+d

(m2
k + zkk2)3

=
6λ̄2

kk
8−2dk2+dzk

(2
√
π)dΓ

(
d
2
+ 1

)
(m̄2

kk
2 + zkk2)3

(8.56)

=
6λ̄2

kk
4k−dzk

(2
√
π)dΓ

(
d
2
+ 1

)
(m̄2

k + zk)3
(8.57)

Equating both sides leaves us with the first dimensionless flow of interest

∂tλ̄k =
6λ̄2

kzk

(2
√
π)dΓ

(
d
2
+ 1

)
(m̄2

k + zk)3
− (4− d)λ̄k (8.58)

We also have

∂tm
2
k = k

d

dk
(m̄2

kk
2) = k

(
2km̄2

k + k2 d

dk
m̄2

k

)
(8.59)

−λkzk

(2
√
π)dΓ

(
d
2
+ 1

) k2+d

(m2
k + zkk2)2

=
−λ̄kk

4−dzk

(2
√
π)dΓ

(
d
2
+ 1

) k2+d

(m̄2
kk

2 + zkk2)2
(8.60)

=
−λ̄kk

2zk

(2
√
π)dΓ

(
d
2
+ 1

)
(m̄2

k + zk)2
(8.61)

Equating both sides leaves us with

∂tm̄
2
k =

−λ̄kzk

(2
√
π)dΓ

(
d
2
+ 1

)
(m̄2

k + zk)2
− 2m̄2

k (8.62)

9 Background Field Method

9.1 Background field method in non-gauged theories

We now must introduce a method which will allow us to compute gauge-invariant
effective actions. In non-gauged theories, the background field method is identical
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9.1 Background field method in non-gauged theories

to the “field-shifting” method. We define an analogous the generating functional
of disconnected diagrams Z̃[J ] which is a function of the fluctuating fields ϕ plus
arbitrary background fields λ which can be thought of as an alternate source.

Z̃[J, λ] =

∫
D exp [i {S[ϕ+ λ, λ] + J · ϕ}] (9.1)

The source J only couples to fluctuating fields. We can then of course define the
analogous generator of connected diagrams, macroscopic averaged field, and effective
action.

W̃ [J, λ] = −i ln Z̃[J, λ], Φ̃ =
δW̃ [J, λ]

δJ
, Γ̃[Φ̃, λ] = W̃ [J, λ]− J · Φ̃ (9.2)

We now shift field in Eq.(9.1) ϕ → ϕ− λ. This allows us to relate the conventional
and background field generating functionals. We find

→
∫

D[ϕ] exp [i {S[ϕ, λ] + J · (ϕ− λ)}] (9.3)

= Z[J ] exp [−iJ · λ] (9.4)

Taking the logarithm of both sides

W̃ [J, λ] = W [J ]− J · λ (9.5)

Differentiating both sides and noting Eqs.(9.2),(5.8) leaves us with the relation

Φ̃ = Φ− λ (9.6)

Plugging into the defined background-field effective action

Γ̃[Φ̃, λ] = W [J ]− J · λ− J · (Φ− λ) = W [J ]− J · Φ = Γ[Φ] (9.7)

But from Eq.(9.6), Φ̃ = Φ− λ thus,

Γ̃[Φ̃, λ] = Γ[Φ̃ + λ] (9.8)

As a special case we can take Φ̃ = 0 such that

Γ̃[0, λ] = Γ[λ] (9.9)

This indicates that the effective action can be determined by computing Γ̃[0, λ]. The
background-field effective action is just a conventional effective action computed in
the presence of the background field λ.
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9.2 Background field method in gauged theories

9.2 Background field method in gauged theories

9.3 Gauge Invariant Generating Functional

As we saw in the previous section, for a Euclidean guage theory the generating
functional of disconnected Green’s functions is given by

Z[J, Ã] =

∫
D[aaµ] det

[
δGa

δωb

]
exp

[
−S[Ãµ + aµ]− i

∫
ddx

{
1

2ξ
GaGa + Ja

µÃ
a
µ

}]
(9.10)

Where the gauge field Aa
µ has been split up into sum of a background field Ã and a

fluctuating field aaµ
Aa

µ = Ãa
µ + aaµ, (9.11)

Ga is a gauge fixing term, and

S[Aa
µ] = S[Ãa

µ + aaµ] =
1

4

∫
ddxFa

µνFa
µν (9.12)

With
Fa

µν = ∂µAa
ν − ∂νAa

µ + g̃fabcAb
µAc

ν

= F̃ a
µν + (Dµ[Ã])

ababν − (Dν [Ã])
ababµ + g̃fabcabµa

c
ν

(9.13)

Where
F̃ a
µν = ∂µÃ

a
ν − ∂νÃ

a
µ + g̃fabcÃb

µÃ
c
ν (9.14)

(Dµ[Ã])
ababν = ∂µa

a
ν − ig̃Ãb

µ(Tb)
acacν (9.15)

is invariant under the gauge transformation

δAa
µ =

1

g̃
(Dµ[A])abδωb (9.16)

We can split this transformation such that the background field Ã transforms inho-
mogeneously whereas the fluctuation aµ transforms homogeneously as a tenor in the
adjoint representation.

δÃa
µ =

1

g̃
(Dµ[Ã])

abδωb (9.17)

δaaµ = iδωb(Tb)
acacµ (9.18)

We should note that Tb here are the generators in the adjoint representation (T †
b = Tb)

which are related to the real structure constants by

fabc = i(Tb)
ac = −i(Tb)

ca (9.19)
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[T a, T b] = ifabcT c (9.20)

The source term in Eq.(9.10) is invariant under the transformation in Eq.(9.16)
provided that the source Ja

µ transforms homogeneously as an adjoint tensor. We will
choose to work in the background gauge with the gauge condition

Ga = (Dµ[Ã])
ababµ (9.21)

10 β−functions for SU(N) Yang-Mills Theory in

d-dimensions
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