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1 Axions

Instantons and the θ-vacuum [27][28][29]

Due to topological conservation laws, ultimately set by the gauge boundary conditions,
non-Abelian gauge fields give rise to an infinite number of degenerate vacua in real
space separated by potential barriers and distinguished by their respective winding
number n. Finite energy soliton solutions in 4-D Euclidean space called “instantons”
provide non-zero transition amplitudes from vacuum with winding number n to vacua
with winding number m = n + ν where ν represents the winding number of the
instanton defined as

ν ≡ g2

16π2

∫
d4xTr[F̃µνF

µν ] (1)

F̃µν =
1

2
ϵµνρσF

ρσ (2)

Where Fµν is the gauge field strength tensor and g is a coupling constant. According
to the semi-classical WKB formalism the transmission coefficient for a particle with
energy E tunneling through a potential barrier is given by

T (E) = exp

[
− 1

ℏ

∫ b

a

[
2m(V − E)

] 1
2

]
dx = exp

[
− SE

]
(3)

Where SE is the Euclidean action. Given the Euclidean action for the instanton
solution we can calculate the transition probability from one vacuum to the next. For
an instanton with winding number ν = 1 we have

SinstE = −1

2

∫
d4xTr[FµνF

µν ] =
8π2

g2
(4)

Thus the transition probability that arises due to the instanton solution for vacua
with winding number n to n+ 1 is approximately

T (E) = exp

[
− 8π2

g2

]
= exp

[
− π

αs

]
(5)

In QCD this is not a small number and these field configurations must be included
into the path integral. The tunneling effects from instantons gives our theory access
to an infinite set of vacua. The actual vacuum of our theory will be a superposition
of these infinite vacua which we can index by n. Under a gauge transformation Ω
corresponding to the instanton solution with ν = 1 we have

Ω |n⟩ = |n+ 1⟩ (6)
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This means that in general the vacuum won’t be invariant under gauge transformations.
To remedy this problem we construct the θ vacuum.

|θ⟩ =
+∞∑

n=−∞

e−inθ |n⟩ (7)

Which under the same gauge transformation

Ω |θ⟩ =
∑
n

e−inθ |n+ 1⟩

=
+∞∑

n=−∞

e−iθ
(
(n+1)−1

)
|n+ 1⟩

=
+∞∑

n′=−∞

e−iθ(n
′−1) |n′⟩

= eiθ
+∞∑

n′=−∞

e−in
′θ |n′⟩ = eiθ |θ⟩

(8)

We see that the θ vacuum only changes by a phase under a gauge transformation
and thus is invariant. We also notice that because [Ω, H] = 0 the θ vacuum must
also be an energy eigenstate of the Hamiltonian. Different values of the θ-vacua are
orthogonal and consist of entirely different “worlds” with different energies. Hence,
there is no gauge-invariant transformation which can change the value of the θ-vacuum
and we are always confined to one θ-vacuum within our theory. We can express the
general vacuum to vacuum transition amplitude

⟨θout|θin⟩ =
∑
m,n

eiθ(m−n) ⟨m|n⟩ =
∑
ν

eiθν
[∑

n

⟨(ν + n)out|nin⟩
]

(9)

Which shows that the amplitude is the sum of all the possible transitions among
vacua with different winding numbers (in the same θ-vacuum). Additionally, each
amplitude is multiplied by a phase factor eiθν . Using the path integral formalism we
can show how this effect can be incorporated into the Lagrangian. The transition
amplitude from |θ⟩ to |θ′⟩ is given by

⟨θ|e−iH(t,t′)|θ′⟩ =
∑
m,n

eimθe−inθ
′ ⟨m|e−iH(t,t′)|n⟩

=
∑
m,n

eim(θ−θ′)eiθ
′(m−n)

∫
(DAµ)(m−n)exp

[
i

∫
d4x(L+ JµA

µ)

] (10)
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We are required to stay in the same θ-vacuum

= δ(θ′ − θ)
∑
ν

eiνθ
∫
(DAµ)νexp

[
i

∫
d4x(L+ JµA

µ)

]
Replacing ν with Eq.(1) we obtain

= δ(θ′ − θ)
∑
ν

∫
(DAµ)νexp

[
i

∫
d4x
(
L+ θ

g2

16π2
Tr[F̃µνF

µν ] + JµA
µ
)]

(11)

We can see explicitly that the effects resulting from the theta vacuum can be incor-
porated into our theory by adding an additional term to the effective Lagrangian
density

Leff = L+ Lθ = L+ θ
g2

16π2
Tr[F̃µνF

µν ] (12)

There are some interesting features of this new Lθ term. For one, Lθ is not invariant
under parity and time reversal transformations. We can see this explicitly by showing
how Lθ transform under parity. Under a parity transformation P we require

t
x1
x2
x3

 7→


t
−x1
−x2
−x3

 (13)

Consequently we see under the metric (+ − −−), the term 1
2
ϵµνρσF

ρσFµν under P
transforms as follows

PFµν = Fµν (14)

PFµν = Fµν (15)

Under a general transformation ϵµνρσ transforms

ϵ′µνρσ = AµlAνmAρnAσoϵlmno = det(A)ϵµνρσ (16)

A parity transformation has det(P) = −1 thus

Pϵµνρσ = det(P)ϵµνρσ = −ϵµνρσ (17)

Putting it all together we see

1

2
ϵµνρσF

ρσFµν →
1

2
ϵµνρσFρσF

µν = −1

2
ϵµνρσF

ρσFµν (18)
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Thus under a parity transformation

Lθ → −Lθ (19)

and we see Lθ is not invariant under parity. Using similar arguments we can see
that Lθ is also not invariant under time reversal. This extra term in the Lagrangian
also causes the neutron to pick up an electric dipole moment proportional to θ. The
detailed calculation isn’t very illuminating so I’ll just outline the calculation. The
interactions between the neutron, proton, and pion can be expressed in the following
effective interaction Lagrangian

LπNN = πaΨ̄N(iγ
5gπNN + ḡπNN)τ

aΨN (20)

Where ΨN is the proton-neutron isospin doublet. The first term gives the normal
Yukawa coupling to the psuedoscalar pions. The second term is CP violating and must
be proportional to θ. Taking isospin to SU(3) and using baryon mass relations one
can show that the Yukawa coupling between the pion and nucleons can be expressed
as

ḡπNN =
2msmumd

fπ(mu +md)
(MΞ −MN)θ ≈ 0.04θ (21)

Loops of pions such as in Figure (1) generate a neutron electric dipole moment.
Cutting off the UV divergences at mN gives

dN =
mN

4π2
gπNN ḡπNN ln

mN

mπ

= (5.2× 10−16e cm)θ (22)

The current bound on the neutron electric dipole moment is |dN | < 2.9× 10−26e cm.
This leaves

θ < 10−10 (23)

Why this CP violating parameter is so small when we have large CP violation in the
weak sector is known as the strong CP problem.

2 Axial Anomaly

U(1) Problem

In the massless quark limit (and no knowledge of the chiral anamoly), the Lagrangian
of QCD is seen to have a large global chiral symmetry expressed as U(3)L × U(3)R=
SU(3)L ×SU(3)R ×U(1)V × U(1)A. When the quark mass terms are included into
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the theory the chiral symmetry is explicitly broken down to SU(3)× U(1)V × U(1)A.
The eight broken generators associated with the breakdown of SU(3)L ×SU(3)R →
SU(3) each have an associated psuedo-Nambu-Goldstone boson which are identified
with the octet of psuedoscalar mesons π±, π0, K±, K0, K̄0, η, η′. If U(1)A is an exact
symmetry we would expect each hadron state to be degenerate with another hadron
state (equal baryon number, spin, and strangeness) but with opposite parity. This
partiy doubling is not seen in the hadron spectrum and thus we suspect U(1)A is
spontaneously broken in the same way that SU(3)L × SU(3)R is broken. In the case
where U(1)A is spontaneously broken we expect two isoscalar 0− mesons. One being
the η and the other with mass comparable to the pion. In 1975 Weinberg [3] showed,
using current algebra, that this unidentified isoscalar psuedoscalar Nambu-Goldstone
boson would be required to have a mass m ≤

√
3mπ. The η is a isoscalar 0− however

mη ≫ mπ thus the η is ruled out. The expected NGB is not seen in experiment
and was dubbed by Weinberg the “U(1) Problem”. Because we don’t observe this
particle it would seem that perhaps there is no U(1)A symmetry within the strong
interactions.

As we saw in our previous discussion, the tunneling probability due to instanton
effects are not negligible at ΛQCD and we must include the Lθ term in the QCD
Lagrangian. In the chiral basis, the QCD Lagrangian becomes

LQCD = iψ̄ /Dψ +Mqψ̄ψ −
1

4
GµνGµν + θ

g2

32π2
G̃µνG

µν (24)

/D = γµDµ = γµ(∂µ − igAµ) (25)

Ga
µν ≡

i

g
[Dµ, Dν ] = ∂µA

a
ν − ∂νAaµ + gfabcAbµA

c
ν (26)

Where ψ ≡ ψL + ψR, ψL ≡ 1−γ5
2
ψ, ψR ≡ 1+γ5

2
ψ, Ga

µν is the gluon field strength
tensor, Aµ ≡ AaµT

a where Aµ is the gluon gauge field and T a ≡ λa/2 are the Gell-
man matrices associated with SU(3). In the limit where the quark masses go to
zero Mq → 0 we see that the Lagrangian has a large chiral symmetry expressed as
U(3)× U(3) = SU(3)L × SU(3)R × U(1)V × U(1)A or equivalently

ψ → exp
(
i(θaT

a + γ5βaT
a + θV + αγ5)

)
ψ (27)

For our purposes we are interested in in how the Lagrangian changes under an
infinitesimal axial transformation identified by

ψ → ψ′ = e−iαγ
5

ψ ≈ ψ + δψ +O(δα2) = ψ − iδαγ5ψ
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ψ† → ψ′† = eiαγ
5

ψ† ≈ ψ† + δψ† +O(δα2) = ψ† + iδαγ5ψ† (28)

Aµ → A′
µ = e−iαγ

5

Aµ ≈ Aµ + δAµ +O(δα2) = Aµ − fabcδαγ5Aµ (29)

We should note that the above transformation acts differently on left-handed and
right-handed quarks

δψR = −iδαγ5ψR = γ5
(
1 + γ5

2

)
ψ = iδαγ5ψR (30)

δψL = −iδαγ5ψL = γ5
(
1− γ5

2

)
ψ = −iδαγ5ψL (31)

We can express the change in the Lagrangian from an infinitesimal transformation
as

δL =
∑
n

[
∂L
∂ϕn
− ∂µ

∂L
∂(∂µϕn)

]
δϕn + ∂µ

[
∂L

∂(∂µϕn)
δϕn

δαJµ
5,n

]
(32)

Which is summed over n-fields (both matter and gauge fields). Let’s now look at
the QCD Lagrangian without Lθ and calculate δL under an infinitesimal chiral
transformation. First we rewrite the massless QCD Lagrangian with expanded
notation for calculational convenience

L = iψ̄i(δij /∂µ − ig /AµT aij)ψj −
1

4
(∂µA

a
ν − ∂νAaµ + gfabcAbµA

c
ν)

2 (33)

When the equations of motion are satisfied, the first term in Eq (32) is equal to zero.
The second term is just ∂µJ

µ
5 = ∂µ(J

µ
5,Aµ

+ Jµ5,ψ)

Jµ5,ψ =
∂L

∂(∂µψ)

δψ

δα
= ψ̄γµγ5ψ (34)

The color currents are conserved

∂µJ
µ
5,ψ = ∂µ(ψ̄γ

µγ5ψ) = 0 (35)

For the gauge fields we have

Jµ5,Aµ
=

∂L
∂(∂λAσ)

δAµ
δα

=
∂L
∂Fµν

∂Fµν
∂(∂λAσ)

δAµ
δα

From Eq (29) we see that
δAµ
δα

= −fabcAµ (36)
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∂L
∂(∂µAµ)

= −1

2
Fµν

∂(∂µA
a
ν)

∂(∂λAσ)

∂(∂νA
a
µ)

∂(∂λAσ)
= −1

2
Fµν(δ

µ
λδ

ν
σ − δµσδνλ)

= −1

2
(Fλσ − Fσλ) = −Fµν

(37)

Where in the last equality I used the fact that Fσλ = −Fλσ and then renamed the
indices. Thus

Jµ5,Aµ
= fabcγ5AbµF

c
µν (38)

Plugging this current into the equations of motion it is easy to verify that this current
is conserved.

∂µJ
µ
5,Aµ

= 0 (39)

This would indicate that the chiral current is conserved ∂µJ
µ
5 = 0. It turns out

that this current actually contains an anomalous divergence resulting from quantum
corrections. This chiral anomaly was first discovered by Jackiw and Bell [28] and
then verified, generalized, and extended to higher orders in perturbation theory by
Adler [2] in 1969. While investigating the decay rate of π0 → 2γ they found that the
regulator needed in order to derive consequences of the conservation of the neutral
axial vector current for one loop diagrams breaks chiral symmetry. This broken
regulator is the source of the anomalous divergence. If we calculate the contributions
of the anomaly where the chiral current and two gluon fields couple as in Figure (2),
the conserved chiral current attains a total divergence.

∂µJ
µ
5 = 2Nf

g2

32π2
G̃µνG

µν (40)

Where Nf is the number of fermions being considered. This total divergence confirms
our initial hunch from the U(1) problem that U(1)A in fact isn’t a symmetry of the
strong interactions.

We can now see that the infinitesimal change resulting from from the chiral transfor-
mation is

δL = 2δαNf
g2

32π2
G̃µνG

µν (41)

Comparing this with Lθ in Eq (24) we can see that under a continuous chiral
transformation the θ parameter is transformed to θ → θ+2αNf . This property of the
chiral transformation which allows us to change the θ parameter will be important
when we attempt to resolve the strong CP problem.
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2.1 EW Contibutions to θ [12]

2.1 EW Contibutions to θ [12]

Let’s take a look at another contribution to the θ parameter which results directly
from the above discussion. The up and down quark Yukawa mass terms in the
Standard model are of the form

Lmass = −ΓdijΨ̄i
LΦd

j
R − ΓuijΨ̄

i
LΦ̃u

j
R + h.c. (42)

Where i and j are generation indices, Γu,dij are 3x3 Yukawa mass matrices, Ψi
L are

left-handed quark doublets, and Φ is the complex Higgs doublet. When the Higgs
field gets a vacuum expectation value (VEV) v and the electroweak symmetry is
spontaneously broken the mass terms become

Lmass = −
v√
2

[
d̄LΓddR + ūLΓuuR

]
+ h.c. (43)

The Yukawa matrices in Eq.(43) are general complex matrices which aren’t necessarily
hermitian. It would appear that we are going to get complex mass values mq̄q m ∈ C.
Of course, the masses must be real in order to be physical. To fix this we can redefine
our fields via a phase transformation qR → eiβqR after we diagonalize the Yukawa
matrices. Let’s see this in action, to diagonalize the Yukawa matrices we can use
unitary matrices Ku,d and Uu,d and rewrite the Yukawa matrices as

Γd → UdMdK
†
d, Γu → UuMuK

†
u (44)

Where Mu,Md are the diagonalized mass matrices. Plugging these into Eq (43)

Lmass = −
ν√
2

[
d̄LUdMdK

†
ddR + ūLUuMuK

†
uuR]

¯
+ h.c. (45)

To do away with K† and U we can change our basis via chiral rotations for the
right-handed fields dR,i → eiβidR,i, uR,i → eiβiuR,i and non-chiral rotations for the
left-handed fields, dL → UddL, uL → UddL. As we saw above, each time we perform
a chiral rotation, the value of the θ parameter will change by θ → θ + 2βi. The total
change in θ is given by

θEW =
∑
i

βi = arg det(KdKu) = arg
[
det(MuMd)det(ΓdΓu)

]
= −arg det(ΓdΓu)

(46)
We see that there are two contributions to the θ-parameter, one from instanton effects
and the other from the mass phases in the EW interactions. These two effects are
independent and have no reason to cancel. So, the total θ which will appear in Lθ is
expressed by

θ̄ ≡ θ + θEW (47)
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2.2 Fujikawa method

2.2 Fujikawa method

The quantum anomaly is best understood as a symmetry breaking by quantization
procedure. In the path-integral formalism anomalies arise when the Lagrangian
of the generating functional is invariant under a group of transformations but the
path-integral measure is not.

Considering a general SU(n) non-abelian gauge theory coupled to left-handed Dirac
spinors.

L = iψ̄L /DψL −
1

4
Tr[FµνF

µν ] (48)

Dµ = ∂µ + igAµ, Aµ = AaµT
a (49)

Fµν = F a
µνT

a, F a
µν ≡

i

g
[Dµ, Dν ] = ∂µA

a
ν − ∂νAaµ + gfabcAbµA

c
ν (50)

Making a transformation to Euclidean space (x0 → −ix4,A0 → iA4, γ
0 → −iγ4,

gµν ≡ diag(+1,−1,−1,−1)→ gµν ≡ diag(−1,−1,−1,−1))

/D = gµνγνDµ → gµνγνDµ = −iγ4
(
−1

i
∂4 − gA4

)
+ γkDk (51)

= γ4(∂4 + igA4) + γkDk ≡ γ4D4 + γkDk (52)

With these definitions the γ-matrices become anti-hermitian1

(γµ)† ≡
(
(−iγ4)†, γ1†, γ2†, γ3†

)
= −γµ (53)

And thus, the covariant derivative operator /D becomes hermitian, defined by the
scalar product2

⟨Φ| /DΨ⟩ =
∫
d4xΦ†(x) /DΨ(x) = ⟨ /DΦ|Ψ⟩ (54)

Where Φ and Ψ are Dirac spinors. Explicitly,

(ig /Aµ)
† = −ig /A†

µ = −igA†
µγ

µ† = ig /Aµ (55)

1Note that this is not the case in Minkowski space where

(γµ)† = γ0γµγ0

2The hermitcity of an operator must be accompanied by a corresponding scalar product to
denote in what Hilbert space the operator is Hermitian.
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2.2 Fujikawa method

Where I have used the fact that (AaµT
a)† = Aaµ

∗T a† = AaµT
a.∫

d4xΦ†/∂Ψ = −
∫
d4xΦ†←−/∂ Ψ = −

∫
d4x/∂

†
Φ†Ψ = −

∫
d4x∂†µγ

µ†Φ†Ψ (56)

=

∫
d4x/∂Φ†Ψ (57)

Where in the first equality I have integrated by parts and in the second equality I

have used the operator property3 ⟨Φ| /∂ = ⟨/∂†Φ|. Thus, /D = /D
†
.

Under conjugate-transposition,

∂†4 = ∂4 ∂†k = ∂k (58)

A4
† = A4, A†

k = Ak (59)

γ4
†
= −γ4, γk

†
= −γk (60)

We can now expand the Dirac fields ψL and ψ̄L in terms of eigenfunctions of the
hermitian operator /D

ψL(x) =
∞∑
n=1

anϕn(x) =
∑
n

an ⟨x|n⟩ (61)

ψ̄L(x) =
∞∑
n=1

b̄nϕ
†
n(x) =

∑
n

b̄n ⟨n|x⟩ (62)

Where
/Dϕn(x) = λnϕn(x) (63)∫
d4xϕ†

n(x)ϕm(x) = δnm (64)

In this basis our Dirac action is diagonalized.∫
d4xiψ̄L /DψL =

∫
d4x

∞∑
n,m

ib̄nϕ
†
n
/Damϕm =

∫
d4x

∞∑
n,m

ib̄namϕ
†
nλmϕm (65)

=
∞∑
n,m

iλmb̄nam

∫
d4xϕ†

nϕm =
∞∑
n,m

iλmb̄namδnm = lim
N→∞

N∑
n

iλnb̄nan (66)

3Given a ket |Ψ⟩ and an operator Λ the operator Λ acting on |Ψ⟩ is given by Λ |Ψ⟩ = |ΛΨ⟩. The
adjoint or corresponding bra is given by ⟨ΛΨ| = ⟨Ψ|Λ†

10



2.2 Fujikawa method

The Euclidean path integral is given by∫
Dψ̄Dψ[DAaµ] exp

[∫
d4x

[
iψ̄L /DψL −

1

4
Tr[FµνF

µν ]

]]
(67)

The Dirac measure can be written

DψDψ̄ = [det ⟨n|x⟩ det ⟨x|n⟩]−1 lim
n→∞

N∏
n=1

db̄ndan (68)

=

[
det

∫
d4xϕ†

nϕm

]−1

lim
n→∞

N∏
n=1

db̄ndan (69)

= [detδnm]
−1 lim

n→∞

N∏
n=1

db̄ndan (70)

= lim
n→∞

N∏
n=1

db̄ndan (71)

Where I have used the fact that for square matricesA andB of equal size det(A)det(B) =
det(AB).

Under local infinitesimal chiral transformations

ψL(x)→ ψ′
L(x) = eiα(x)γ

5

ψL(x) ≈ ψL(x) + iα(x)γ5ψL(x) (72)

ψ̄L(x)→ ψ̄′
L(x) = ψ̄L(x)e

iα(x)γ5 ≈ ψ̄L(x) + iα(x)ψ̄L(x)γ
5 (73)

Where in Euclidean space γ5 is given as

γ5 = −γ1γ2γ3γ4 = (γ5)†, (γ5)2 = 1 (74)

Expanding in our complete basis of eigenfunctions

ψ′
L(x) =

∑
n

ϕn(x) ⟨n|ψ′
L⟩ =

∑
n

anϕn(x) + iα(x)γ5
∑
n

anϕn(x) (75)

Multiplying from the left with ϕ†
n(x) and integrating over space∫

d4xϕ†
Lψ

′
L(x) ≡ a′n = an + i

∑
m

am

∫
d4xϕ†

n(x)α(x)γ
5ϕm(x) (76)

11



2.2 Fujikawa method

Likewise,

ψ̄′
L(x) =

∑
n

ϕ†
n(x) ⟨n|ψ̄′

L⟩ =
∑
n

b̄nϕn(x) + i
∑
n

b̄nϕ
†
n(x)α(x)γ

5 (77)

Multiplying from the right with ϕn(x) and integrating over space∫
d4xψ̄(x)ϕn(x) ≡ b̄′n = b̄n + i

∑
m

b̄m

∫
d4xϕ†

m(x)α(x)γ
5ϕn(x) (78)

The integration measure becomes

lim
N→∞

N∏
n=1

db̄′nda
′
n =

[
det

(
δnm + i

∫
d4ϕ†

n(x)α(x)γ
5ϕn(x)

)]−2

lim
N→∞

N∏
n=1

db̄ndan (79)

Using the relations
det
[
eA
]
= eTr[A] (80)

or
det[A] = eTr[lnA] (81)

and
(det[A])b = det[Ab] (82)

The determinant in Eq.(79) becomes

exp

{
Tr

[
−2 ln

(
δnm + i

∫
d4xϕ†

n(x)α(x)γ
5ϕm(x)

)]}
(83)

Expanding ln(· · · ) in a Taylor series and keeping to first order in α i.e.

ln(1 + ϵx) ≈ ϵx+O(ϵ2) for ϵ≪ 1 (84)

= exp

{
Tr

[
−2i

∫
d4xϕ†

n(x)α(x)γ
5ϕm(x)

]}
(85)

= exp

[
−2i lim

N→∞

N∑
n=1

∫
d4xϕ†

n(x)α(x)γ
5ϕn(x)

]
(86)

This is non-other than the Jacobian J for the Dirac measure under a chiral transfor-
mation

Dψ̄′Dψ′ = JDψ̄Dψ (87)
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2.2 Fujikawa method

J ≡ exp

[
−2i lim

N→∞

N∑
n=1

∫
d4xϕ†

n(x)α(x)γ
5ϕn(x)

]
(88)

To evaluate explicitly we need to regulate the sum over modes in a gauge invariant
way. We can replace the so-called “mode cut-off” limN→∞

∑N
n=1 with an eigenvalue

cut-off limΛ→∞ f(λ2n/Λ
2) where Λ is a regularisation scale. While both regularizations

can be made arbitrarily equivalent with a suitable choice of regulator f the latter is
desirable because we can show the regulator independence of our result.

J = exp

[
−2i lim

Λ→∞

∫
d4xα(x)

∞∑
n=1

ϕ†
n(x)γ

5f

(
λ2n
Λ2

)
ϕn(x)

]

= exp

[
−2i lim

Λ→∞

∫
d4xα(x)

∞∑
n=1

ϕ†
n(x)γ

5f

(
/D
2

Λ2

)
ϕn(x)

] (89)

Performing a unitary transformation from the ϕn(x) basis to a plane-wave basis eik·x

we can extract the gauge field dependence directly4.

= exp

{
−2i lim

Λ→∞

∫
d4xα(x)Tr

[∫
d4k

(2π)4
e−ik·xγ5f

(
/D
2

Λ2

)
eik·x

]}
(90)

Where the trace is over spinor and gauge group generator indices. The /D
2
operator

can be rewritten as

/D
2
= γµDµγ

νDν = DµDνγ
νγµ = DµDν

(
[γµ, γν ]

2
+
{γµ, γν}

2

)
(91)

Using the Clifford algebra relation {γµ, γν} = 2gµν

= DµDνg
µν +DµDν

[γµ, γν ]

2
= DµDµ +

1

2
(DµDνγ

µγν −DµDνγ
νγµ) (92)

= DµDµ +
1

2
γµγν [Dµ, Dν ] = DµDµ −

ig

2
γµγνFµν (93)

4The sum over the n modes can be considered as a trace over the operator γ5f( /D
2
/Λ2) ≡ O

in the ϕn(x) eigenspinor basis of fields. Tr[O] =
∑

n ϕ
†
n(x)Oxϕn(x) =

∑
n ⟨ϕn|x⟩ ⟨x|O|ϕn⟩ =∑

n ⟨x|O|ϕn⟩ ⟨ϕn|x⟩ = ⟨x|O|x⟩ =
∫

dk
2π ⟨x|k⟩ ⟨k|O|x⟩ =

∫
dk
2π e

−ikxOke
ikx where Ox and Ok describe

the operator O in the x and k basis.
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2.2 Fujikawa method

Where in the second line I have renamed indicies in the last term of the first line
µ↔ ν. Because γ5f( /D

2
/Λ) is hermitian we can evaluate it in position or momentum

space ⟨k|O|x⟩. If we choose to evaluate in position space we have

D2 = DµDµ = (∂µ + igAµ)(∂µ + igAµ) = ∂2 + ig(∂µAµ +Aµ∂µ)− g2A2 (94)

If we assume the gauge fields vanish at infinity or at the boundary we can integrate
by parts in the second term after adding and subtracting Aµ∂µ

ig(∂µAµ +Aµ∂µ) = ig(∂µAµ −Aµ∂µ + 2Aµ∂µ) = ig(2∂µAµ + 2Aµ∂µ) (95)

Thus,

D2eik·x =
[
−k2 − 2gAµkµ − g2A2 + 2ig∂µAµ

]
eik·x =

[
−(kµ + gAµ)

2 + 2ig∂µAµ

]
eik·x

(96)
The Jacobian becomes

J = exp

{
− 2i

∫
d4xα(x)

× lim
Λ→∞

Tr

[∫
d4k

(2π)4
γ5f

(
−(kµ + gAµ)

2

Λ2
+

2ig∂µAµ

Λ2
− ig

2

γµγνFµν

Λ2

)]}
(97)

Shifting the integration variable kµ → (kµ − gAµ) and then performing a scale
transformation kµ → kµΛ

= exp

{
− 2i

∫
d4xα(x)

× lim
Λ→∞

Λ4Tr

[∫
d4k

(2π)4
γ5f

(
−k2 + 2ig∂µAµ

Λ2
− ig

2

γµγνFµν

Λ2

)]} (98)

Next we expand5 our regulator function in powers of 1/Λ about k2 noting that any
term in the expansion proportional to 1/Λ5 or higher order will vanish in the limit
Λ→∞ and the identities

Tr
[
γ5
]
= Tr

[
γ5γµγν

]
= 0 (99)

5

f(x) = f(k2) + f ′(x)

∣∣∣∣
x=k2

(x− k2) +
f ′′(x)

2!

∣∣∣∣
x=k2

(x− k2)2 + · · ·
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2.2 Fujikawa method

The expansion gives one contribution to the Jacobian

= exp

{
− 2i

∫
d4xα(x)Tr

[
γ5
(
ig

2
γµγνFµν

)2 ∫
d4k

(2π)4
f ′′ (−k2)

2!

]}∣∣∣∣
k2=0

(100)

= exp

{
ig2

4

∫
d4xα(x)Tr

[
γ5γµγνγργσFµνFρσ

] ∫ d4k

(2π)4
f ′′ (−k2)}∣∣∣∣

k2=0

(101)

We compute separately each component

Tr[γ5γµγνγργσFµνFρσ] = Tr[γ5γµγνγργσ]Tr[FµνFρσ] (102)

Where the first trace is over spinorial components and the second trace is over gauge
generator indices. To show

Tr[γ5γµγνγργσ] = −4ϵµνρσ (103)

We note that the only contributing case is when µ ̸= ν ̸= ρ ̸= σ. In this case, the
trace is proportional to the antisymmetric symbol due to the anticommutation of
gamma matrices with differing indices. To find the proportionality constant we can
simply do a test case of µνρσ = 1234.

Tr[γ5γ1γ2γ3γ4] = −Tr[γ1γ2γ3γ4γ1γ2γ3γ4] (104)

= Tr[γ1γ2γ3γ0γ1γ2γ3γ0] (105)

= (−1)3Tr[γ0γ0γ1γ2γ3γ1γ2γ3] (106)

= −(−1)2Tr[γ1γ1γ2γ3γ2γ3] (107)

= (−1)Tr[γ2γ2γ3γ3] (108)

= −Tr[14×4] = −4 (109)

Thus, the proportionality constant is −4 and

Tr[γ5γµγνγργσ] = −4εµνρσ (110)

Next,∫
d4k

(2π)4
f ′′ (−k2) = 2π2

Γ(2)(2π)4

∫ ∞

0

dkk3f ′′(−k2) = 1

16π2

∫ ∞

0

dxxf ′′(x) (111)

=
1

16π2

[
xf ′(x)

∣∣∣∣∞
0

−
∫ ∞

0

f ′(x)

]
(112)
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=
1

16π2
(113)

The last equality provides the conditions of validity for our regulator

f(0) = 1, f(∞) = 0, xf ′(x)

∣∣∣∣
x=0

= xf ′(x)

∣∣∣∣
x=∞

= 0 (114)

Any regulator with these properties is a valid. Plugging everything in, the Jacobian
of the chiral transformation becomes

J = exp

{
−
∫
d4xα(x)

ig2

16π2
Tr [ϵµνρσFµνFρσ]

}
(115)

Choosing the normalization

Tr[T aT b] =
1

2
δab (116)

We have

J = exp

{
−
∫
d4xα(x)

ig2

32π2
ϵµνρσF a

µνF
a
ρσ

}
(117)

= J = exp

{
−
∫
d4xα(x)

ig2

16π2
ϵµνρσF a

µνF
a
ρσ

}
(118)

We could also just as well perform the calculation in momentum space. The covariant
derivative becomes ∂µ → ip̂, and p̂ |k⟩ = k |k⟩

Dµ = (∂µ + igAµ)⇝ (ip̂µ + igAµ) (119)

3 Axion to aisle θ for strong CP cleanup [26][16][13][19]

As we saw above, the strong interactions seem to conserve CP and experimental
measurement of the neutron electric dipole moment place strong bounds on the value
of the θ parameter. Perhaps the most elegant solution to the strong CP problem was
provided by Roberto Peccei and Helen Quin in 1977. There main idea was to mimic
the properties of the chiral transformations effects on θ to somehow eliminate the CP
violating parameter all together. They showed that this could be achieved given that
at least one of the quarks obtains its mass via a Yukawa coupling to a scalar field.
Naturally, we can identify this scalar field with a Higgs field in some electroweak
theory. The theory acquires a new chiral U(1) symmetry termed U(1)PQ which is
spontaneously broken at some energy scale fa when the scalar field associated with
the PQ symmetry acquires a VEV . The original Peccei-Quinn theory involves an
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extension of the Standard Model with the inclusion of an additional Higgs doublet.
In order to avoid problems with FCNCs we say that one Higgs doublet couples
exclusively to charge 2/3 up quarks and the other couples to only charge -1/3 down
quarks. Although the original axion from the standard axion model has been ruled
out by experiment, it is informative to look at this model to understand the physics
and then extend the same arguments to invisible axion models. We begin with the
Lagrangian LQCD + LWS + LH where the first two terms are the standard QCD and
Weinberg-Salam models and LH contains the couplings involving the extra set of
Higgs fields.

LH = (DµΦ1)
†(DµΦ1) + (DµΦ2)

†(DµΦ2)− V (Φ1,Φ2)

− Γ1
ij(d̄RiΦ̃1ΨLj + Ψ̄LiΦ1dRj)− Γ2

ij(ūRiΦ̃2ΨLj + Ψ̄LiΦ1uRj)
(120)

ΨL =

[
uL
dL

]
,Φ1 =

[
ϕ+

ϕ0

]
,Φ2 =

[
ϕ′0

ϕ′−

]
(121)

Dµ = ∂µ − igW a
µ τ

a − 1

2
ig′Bµ (122)

Where Φ1,2 are the two complex Higg’s multiplets, Φ̃1,2 = iσ2Φ
∗
1,2, Γ1,2

ij are the
associated 3× 3 Yukawa matrices, Bµ is the hypercharge gauge boson, and W a

µ are
the SU(2) gauge bosons. If the scalar fields carry the Peccei-Quinn charge QPQ then
we can transform them via the U(1)PQ transformation.

ΨL → e−iαLΨL, uR → e−iαuR , dR → e−iαdRdR (123)

Φk → e−iαkΦk for k=1,2 (124)

In order for the Lagrangian to be invariant under U(1)PQ the phases must satisfy

α1 = αL − αdR , α2 = αL − αuR (125)

We see that the Yukawa interaction cannot be U(1)PQ in the SM because we need
at least two Higgs doublets to satisfy Eq (125). We are interested in the properties
of the axion, so we will focus on the Nambu-Goldstone boson sector of the theory.
We can choose the Higgs potential V (Φ1,Φ2) so that both Φ1 and Φ2 obtain vacuum
expectation values and as a result produce four Nambu-Goldstone bosons in the
absence of couplings to the gauge fields. Three of these particles are absorbed in the
Higgs mechanism and give mass to the W±

µ , and Zµ. The fourth Nambu-Goldstone
boson is identified as the “axion” or “Higglet” 6. We can conveniently write the axion

6In the literature the axion is sometimes called the higglet as proposed by Bjorken.
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field independently from the other components as a common phase field in Φ1 and
Φ2 which is orthogonal to the weak hypercharge.

Φ1 =
ν1√
2

[
0
1

]
exp

(
ia

xν

)
, Φ2 =

ν2√
2

[
1
0

]
exp

(
ixa

ν

)
(126)

Where x = ν1
ν2

and ν =
√
ν21 + ν22 . After symmetry breaking, the axion Lagrangian

becomes

La = m2
WW

+
µ W

−
µ +

1

2
m2
zZ

2
µ +

1

2
(∂µa)

2 −mdj

(
d̄Rexp

(
−ia
xν

)
dL + d̄Lexp

(
ia

xν

)
dR

)
−muj

(
ūjRexp

(
−ixa
ν

)
ujL + ūjLexp

(
ixa

ν

)
ujR

)
(127)

The last two terms can be rewritten

La ⊃ −mdj d̄exp

(
iaγ5

xν

)
d−muj ū

jexp

(
ixaγ5

ν

)
uj (128)

= −mui

[
ūiuicos

(
xa

ν

)
+ ūiγ5uisin

(
xa

ν

)]
−mdi

[
d̄idicos

(
a

xν

)
+ d̄iγ5disin

(
a

xν

)]
(129)

Where the mass matrices has been diagonalized. The original U(1)PQ symmetry in
Eq (120) can still be realized after symmetry breaking through transformations where
the axion field translates

a→ a+ αfa (130)

Where fa is the axion order parameter associated with the breakdown of U(1)PQ.
In the standard axion model fa is set to coincide with the electroweak breakdown
ν ≈ 250 GeV. The assignment of PQ (chiral) charge for each field is model-dependent,
following the original paper [4], they took all left handed fermions to have QPQ=0
and dR, uR are assumed to only couple to Φ1 and Φ2, respectively. In this case we
see from Eqs (125) and (127) that the axion Lagrangian is invariant under U(1)PQ
if

αdR =
α

x
, αuR = αx (131)

Now that we know how the fields change under U(1)PQ we can calculate the PQ
current.

JµPQ = ν∂µa+
1

x
d̄Rγ

µdR + xūRγ
µuR (132)
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The current is conserved via the classical equations of motions but as we know from
the chiral transformations studied in the previous section, this current is afflicted by
the same total divergence due to the chiral anomaly and proportional to the number
of fermion doublets N

∂µJ
µ
PQ = Nf

(
x+

1

x

)
g2

32π2
G̃µνG

µν (133)

Now we need to relate the axion back to Lθ̄. We can do this easily by removing the
axion from Φi via a chiral transformation on the right-handed quarks

uR → exp

(
−ixa
ν

)
uR, dR → exp

(
−ia
xν

)
dR (134)

You probably recognize at this point that this chiral transformation is the same
one we performed in our earlier discussion where we were diagonalizing the Yukawa
mass matrices via chiral phase rotations. We see that this chiral transformation
equivalently changes θ̄

θ̄ → θ̄ +

(
x+

1

x

)
a

ν
≡ θ̄ +Nm

a

ν
(135)

Where Nm is a model-dependent coefficient. When it’s all said and done, we add an
additional term to the axion Lagrangian to ensure both the chiral anomaly in Eq
(133) and the transformation property in Eq (135) are satisfied. The resulting term
creates an effective potential for the axion which is periodic in the effective vacuum
angle.

Veff,a =

(
θ +

a

ν
N

)
g2

32π2
G̃µνG

µν (136)

We are interested where this potential is minimized to get the axion VEV

⟨∂Veff,a
∂a
⟩ = N

ν

g2

32π2
⟨G̃µνG

µν⟩
∣∣∣∣
⟨a⟩

= 0 (137)

Peccei and Quinn showed that the axion VEV must take the form

⟨a⟩ = −θ̄ ν
N

(138)

This can be more easily understood by first considering what the axion VEV could
be before including the effects of the color anomoly. Because the axion is a phase
field the U(1)PQ symmetry allows

0 ≤ N
⟨a⟩
ν
≤ 2π (139)
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3.1 Invisible Axion Models

When we include the effects of the color anomaly it generates a potential for the
axion which is periodic in the effective vacuum angle θ̄ + ⟨a⟩N/ν:

Veff ≈ cos

(
θ̄ +N

⟨a⟩
ν

)
(140)

Which is minimized when
⟨a⟩ = −θ̄ ν

N
(141)

The physical axion will result from excitations around the minimum of this potential.
Thus, we define

a = ⟨a⟩+ aphys (142)

When the Lagrangian is rewritten in terms of aphys the Lagrangian no longer has the
CP-violating θ̄-term. In conclusion we see that if θ̄ is not initially zero, the axion
field will shift to dynamically cancel the non-zero θ̄ and therby conserve CP, solving
the strong CP problem.

3.1 Invisible Axion Models

The original axion proposed by Weinberg and Wilczek [6] (motivated by the work of
Peccei and Quinn [4][5]), while a useful pedagogical tool, has been essentially ruled
out by experiment (Table 1) as well as astrophysical arguments.

Reaction Theory Experiment

BR(K+ → π+ + a) ≈ 3× 10−5(x+ 1
x
)2 < 3.8× 10−8

BR(J/Ψ→ a+ γ) 3.7± 0.8× 10−5x2 < 1.4× 10−5

BR(υ → a+ γ) 2.0± 0.7× 10−4(1/x)2 3× 10−4

τ(a→ 2γ) ≈ 0.2(100keV/ma)
5 sec not detected

τ(a→ e+e−) ≈ 4× 10−9(1MeV/ma)(1− 4m2
e/m

2
a)

1/2x3 sec not detected

Table 1: This table shows the experimental results which rule out the Peccei-Quinn-
Weinberg-Wilczek (PQWW) axion.

Variant axion models, known as invisible axion models, where fa ≫ ν are still viable.
Invisible axion models contain very light, very weakly interacting axions, hence their
name. In essence, all invisible axion models are constructed using the same two
ingredients
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3.1 Invisible Axion Models

• A new complex scalar field σ is introduced into the theory which carries QPQ

and has a very large expectation value

• The scalar field is a singlet under SU(2)×U(1)Y and only couples to ordinary
matter through U(1)PQ symmetry

What varies from model to model is the assignment of QPQ to ordinary matter.
Two popular models within the literature, namely the KSVZ and DFSZ models, are
discussed in the following.

3.1.1 KSVZ Model

In the KSVZ invisible axion model, written down by Kim [7]; Shifman, Vainshtein,
and Zakharov [8], regular fermions carry no QPQ and the axion is introduced as a
phase field in the scalar field σ. The theory also assumes the existence of a new
(heavy) quark Q with mass MQ ≈ fa. The new quark is a singlet under SU(2)×U(1),
carries QPQ, and couples with the σ field. The relevant Yukawa term for the new
quark is

LKSVZ
Yuk = hQ̄LσQR + h.c. (143)

Where h is chosen to be a positive Yukawa coupling and

σ =
fa√
2
exp

(
ia

fa

)
(144)

As we did in the standard axion model, if we assume only QR carries PQ charge then
by similar arguments the axion can couple to ordinary matter through the chiral
anomaly

LKSVZ
a =

a

fa

(
g2

32π2
G̃µνG

µν + 2e2Q
α

4π
F̃µνF

µν

)
(145)

Where eQ is the electric charge of the Q quark and Fµν is the electromagnetic field
strength. By construction this axion doesn’t couple with leptons at tree level and
only interacts with light quarks through the strong and electromagnetic anomalies.
Because of these properties, this axion is sometimes referred to as the “hadronic”
axion.

3.1.2 DFSZ Model

The DFSZ model, written down by Dine, Fischler, and Srednicki [9] as well as
Zhitnitsky [10], is identical to the Peccei-Quinn model but with the additional complex
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3.2 Axion Mass and Couplings

scalar field σ. The σ field can only directly couple to ordinary fermions through the
Higgs potential and couples to the Higgs fields through a quartic coupling

LσH = κΦ+
1 C(σ

†)2Φ2 + h.c. (146)

The model demands that the potential V(Φ1,Φ2, σ) give a large VEV to σ, which in
return sets fa ≫ ν and in this limit the three Higgs fields become

σ =
fa√
2
exp

(
ia

fa

)
(147)

Φ1 =
ν1√
2
exp

(
iX1a

fa

)[
0
1

]
, Φ2 =

ν2√
2
exp

(
iX2a

fa

)[
1
0

]
(148)

X1 = 2

(
ν2
ν

)2

, X2 = 2

(
ν1
ν

)2

(149)

We can see that the quartic coupling in Eq.(146) is invariant under axion translations
a→ αfa as required. The DFSZ axion has a smaller interaction strength than the
standard axion and interacts with leptons at tree level.

The two models discussed above differ in their coupling strengths to matter and
distinguish how the potential axion behaves in the physical world. In the next section
we discuss some of the consequences of these different couplings.

3.2 Axion Mass and Couplings

The axion mass was first calculated by Bardeen and Tye [11] using low energy current
algebra methods. The small mass ultimately stems from total divergence in the axial
current Eq (133) due to the color anomaly. Thus, the axion only attains a mass at
ΛQCD. Bardeen and Tye showed that the axion mass is given by

m2
a = N

F 2
πm

2
π

f 2
a

z

(1 + z)2
= 6.3 µeV

(
N
1012 GeV

fa

)
(150)

Fπ = 93 MeV, z =
mu

md

= 0.56± 0.042 [14] (151)

Again, N is a model dependent coefficient. As an example the standard axion
N = Ng(x+

1
x
) and thusma ∼ 75(x+1/x) keV. Using effective Lagrangian techniques

ma ∼ 25 keV [15].
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3.2 Axion Mass and Couplings

Phenomenologically speaking, the most important and distinguishing feature of each
invisible axion model is its coupling with the photon. We can write down an effective
Lagrangian for the interaction of axions and photons

Leff,aγ = −
1

2
(∂µa)

2 − 1

2
maa

2 +
1

2
(E2 −B2)− 1

4
gaγγaF̃µνF

µν (152)

The final term on the RHS is the axion-photon interaction term and is of particular
interest

Laγγ = −
1

4
gaγγaF̃µνF

µν = −gaγγaE ·B (153)

gaγγ =
α

2πfa

(
E

N
− 2

3

4 + z

1 + z

)
=

α

2π

(
E

N
− 2

3

4 + z

1 + z

) √
z

1 + z

ma

mπFπ
(154)

N =
∑
j

QPQ,j, E = 2
∑
j

QPQ,je
2
Q,jNc,j (155)

N and E are model dependent coefficients which appear in the color and electroma-
gentic anomaly. QPQ is the PQ charge for the jth fermion, eQ is the electric charge on
the jth fermion (in units of proton charge e), and Nc is the color degrees of freedom
(3 for quarks, 1 for leptons) on the jth fermion. For the DFSV model E

N
= 8

3
and for

the KSVZ model E
N

= 0 (when eQ = 0) [13] [16].

The axion interactions with fermions can be written most generally as

Laf = −igaff Ψ̄jγ
5Ψja or

Cj
fa

Ψ̄jγ
µγ5Ψj∂µa (156)

gaff =
Cfmf

fa
(157)

Where mf is the fermion mass and Cf is a model dependent parameter. We can also
define an “axion fine structure constant” which is often used in the literature

αa,j =
g2aff
4π

(158)

Table (2) contains the relevant parameter values for the DFSV and KSVZ invisble
axion models which are used in most phenomenological analyses.
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3.2 Axion Mass and Couplings

Parameter DFSZ KSVZ

gγ = gaγγ(
πfa
α
) 0.37 -0.96

Ce
1
3
cos2β 0

Cp −0.10− 0.45 cos2β -0.39

Cn −0.18 + 0.39 cos2β +0.04

Table 2: tanβ = ν2/ν1, gγ = (E/N − 1.92)/2. This table shows the relevant model-
dependent parameters. To see how the DFSZ parameters depend on cos2β see Figure
(3)

Its also good to note that gγ and Cf are dimensionless while gaγγ has dimensions of
m−1

Figure 1: [16] This figure shows how the DFSZ model parameters scale with cos2β
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4 Astrophysical and Cosmological Limits [16]

The well-motivated axion, if realized in nature, would play a prominent role in the
astrophysical arena. With our knowledge of astrophysical phenomena we can place
stringent bounds on axion dynamics. In some parameter spaces, the axion may be
a viable dark matter candidate. I will now discuss some notable bounds based on
astrophysical observation and theory.

4.0.1 Stellar Cooling and New Particle Channels

Stellar evolution is tightly correlated to the allowed nuclear and thermal processes
occurring within the stellar interior. Any addition of allowed energy channels (energy
sinks) within the stellar interior would have effects on the propagation of energy
through the stellar interior and ultimately effecting the cooling and evolution of the
star. On degenerate stars such as white dwarfs the existence of these new energy
channels would cause a higher energy-loss rate and accelerate the cooling of the
star. For non-degenerate stars like the sun, the impact is less obvious. The extra
energy channel leads to contraction and heating until temperatures rise enough to
increase nuclear burning which offsets the extra energy loss. This indicates that the
extra energy channel would increase the consumption of nuclear fuel and decrease the
period in which the star remains in this fuel-burning regimen. For example invisible
axions may contribute to energy loss via Primakoff process in the hydrogen burning
main sequence of a solar mass star. This extra energy loss from the new axion channel
would cause the main sequence star to burn its hydrogen more quickly and the time
spent in the main sequence would decrease. To be exact, we can produce a simple
quantitative model which describes the effect of incorporating a new energy loss
channel on the stellar structure. We begin with the differential equation derived via
energy conservation considerations for a stellar model

dLr
dr

= 4πr2ϵρ (159)

ϵ = ϵnuc + ϵgrav − ϵν − ϵx (160)

Where Lr is the net flux of energy through a spherical shell of radius r, and ϵ is
the effective rate of local energy production with ϵnuc as the rate of nuclear energy
production, ϵν as the rate of energy loss by neutrino production, and ϵx as the energy
loss due to novel particles such as invisible axions or nonstandard neutrinos with
magnetic dipole moments. If we assume the perturbed configuration is given via a
homology transformation in that the distance between two points is proportional to
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the change in the radius of the configuration i.e.

R′ = yR (161)

Where y is the scaling factor. Thus every point in the star is then mapped by the
same transformation

r′ = yr (162)

The mass remains the sameM ′(r′) =M(r) and thus we can realize the transformations
for density and pressure.

ρ′(r′) =
ρ(r)

y3
, p′(r′) =

p(r)

y4
(163)

The equation of state for a low mass, non-degenerate star is approximately given
by the ideal gas law where p ∝ ρT

µ
where µ is the average molecular weight of the

electrons and nuclei within the star. Because we assumed that µ′(r′) = µ(r) the
temperature and temperature gradient are

T ′(r′) =
T (r)

y
,

dT ′(r′)

dr′
=

1

y2
dT (r)

dr
(164)

most importantly we can find the transformation law for the local energy flux

L′(r′) =
L(r)
√
y

(165)

Our initial assumption that the star reacts to a new particle emission through a
homologous contraction places restrictions on how the local energy production can
scale with density and pressure, namely

ϵ ∝ ρnT ν (166)

For ϵnuc, the density has to scale with n = 1, and in the temperature range of the
pp-chain ν = 4−6. Assuming ϵx follows this same proportionality and if we ignore the
energy loss from neutrinos (ϵν) as well as the local energy gains from the contraction
of the star (ϵgrav) we can rewrite the rate of local energy production in Eq.(160)
as

ϵ = (1− δx)ϵnuc (167)

Where δx < 1 and depends on the interaction strength of the new particle. From
Eqs.(159), (164), and (163) we can rewrite Eq.(165)

L′(r′) = (1− δx)
L(r)

y3+ν
(168)
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Thus,
y = (1− δx)2/(2ν+5) (169)

Friedman et al. showed that in the limit δx ≪ 1 the fractional changes in stellar
radius, luminosity, and interior temperature are given by

δR

R
=
−2δx
2ν + 5

,
δL

L
=

δx
2ν + 5

,
δT

T
=

2δx
2ν + 5

(170)

We see that in this model, when a new particle is emitted the star shrinks in size,
increases its surface luminosity and increases its temperature. The overall changes in
stellar structure are moderate and the main feature is an increased consumption of
nuclear fuel. This leads to a decreased fuel burning phase of

δτ

τ
≈ −δx (171)

In general the new particle emission doesn’t have the same temperature and density
dependence as the nuclear burning rate which would result non-homologous transfor-
mation after the perturbation. This model still remains valid to lowest order if we
interpret δx as an average over the entire star

δx =
Lx

(Lx + Lγ)
(172)

Where Lγ is the average photon luminosity and Lx is the averaged luminosity of the
newly emitted particle which can be computed from an unperturbed solar model. The
realization of the link between energy-loss and stellar evolution is a very powerful tool
in placing limits on weakly-interacting particles and their couplings. By incorporating
axion decay channels into solar models we can place bounds on the Yukawa couplings
bewteen invisible axions with electrons, nucleons, and photons. Potential axion
channels which could act as energy sinks within stellar interiors are

1. Compton scattering: γ + e→ e+ a

2. Axion Bremsstrahlung: e+ Z → e+ Z + a

3. Primakoff effect: γ + Z → Z + a

In the following I will quote some results from analyses similar to the one above but
first we need to have some idea of how stars evolve.
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4.0.2 Stellar Evolution

To identify observables of stellar structure and evolution which can be used to discover
and constrain new energy channels we need to understand how stars evolve through
time. For our purposes I will only give a very brief and bulleted account of stellar
evolution.

1. Large self-gravitating masses of hydrogen, helium, and metals contract and heat
until the gas reaches a temperature where nuclear fusion begins.

2. Main Sequence (MS): Star burns helium as fuel and its brightness is completely
determined by its mass.

3. Red Giant (RG): The star depletes it hydrogen reservoirs and forms a helium
core with a hydrogen burning shell around it. The material around the core
begins to expand and the core contracts and heats. The star goes through
a number of “helium flashes” which act as the stars transition from burning
hydrogen to helium as its fuel source.

4. Horizontal Branch (HB): Both the hydrogen burning shell and helium core are
burning fuel as a result, the surface shrinks considerably and the surface is
much bluer (hotter).

5. Asymptotic Giants/White Dwarfs (AG/WD): Helium is exhausted and a carbon-
oxygen (CO) core forms with a helium shell. In high mass stars the CO begins
burning as fuel and the star grows hotter and expands producing an asymptotic
giant. For low mass stars, the CO core never ignites and the star releases stored
heat from its interior.

6. Type I and Type II Supernova (SNI/SNII): White dwarfs in binary systems
can acquire mass from the other member causing the CO core to become so
hot and dense that the elements ignite leading to a (subsonic) deflagaration or
(supersonic) detonation front. This sweeps through the entire WD and creates
a type I supernova. Large mass stars progress until they acquire an iron core.
When this core reaches its Chandrasekhar limit the core becomes unstable (due
to the release of neutrinos) and collapses. A shock wave is formed at the edge
of the core and propagates outward turning the implosion into a spectacular
explosion termed a type II supernova.

7. Black Holes: Of course, ultra high-mass stars can collapse to form a black hole.

Evolutionary steps 2-5 can be seen distinctly on a color-magnitude diagram seen in
Figure (4).

28



Figure 2: [16] Color-magnitude diagram for globular cluster M3 based on photometric
data of 10,637 stars. MS: Main-sequence, BS: blue-stragglers, TO: Main sequence
turn off, SGB: Sub-giant branch, RGB: Red-giant branch, HB: Horizontal branch,
AGB: Asymptotic giant branch, and P-AGB: Post-asymptotic giant branch.

4.0.3 Horizontal branch stars in globular clusters

In the horizontal branch of the color magnitude diagram (Figure 4) the helium
burning within the core and the hydrogen burning shell around the helium core are
approximately balanced. This causes the total luminosity to remain constant while
the surface temperature decreases. Because the core temperature of these star is
∼ 108K, axions with a mass of ma ≤ 10keV would contribute to the cooling process.
If we consider the standard helium burning luminosity via triple-α reaction L3α

and the luminosity La of the non-standard energy-loss via axion Primakoff process
integrated over the core then from Eq (172) we see that the period of helium burning
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tHe will be reduced by an approximate factor L3α/(La + L3α). If we demand a
reduction of less than 10% it translates into the requirement that La ≤ 0.1L3α.
L3α = 20L⊙ is a standard value for a typical HB star. Taking the core mass to be
around 0.5M⊙ the core-averaged energy generation rate is ⟨ϵ3α⟩ ≈ 80 erg g−1s−1. The
energy-loss rate via axions by Primakoff process is found to be proportional to g10T

7/ρ
where g10 = gaγγ/10

−10 GeV−1. For a typical HB star with ρ4 ≡ ρ/104g cm−3 and
T8 ≡ T/108K, ⟨T 7

8 /ρ4⟩ ≈ 0.3 which yields ϵa ≈ g210 30 erg g−1s−1. For g10 = 1 the
helium-burning lifetime should be reduced by a factor of 80/(80+30)= 0.7. Numerical
evolution sequences produced from Raffelt and Dearborn [17] with stars of mass
1.3M⊙ , intial Helium abundance of 25% and metalicity Z=0.02 found that the
helium-burning lifetime without the axion channel was 1.2×108 yrs and with was
modified to 0.7× 108 yrs with g10 = 1. Axion losses on this HB model reduced the
helium burning lifetime by a factor of 0.6, which is in good agreement of our analytic
prediction. Thus, we have our first limit on the axion-photon coupling

gaγγ < 1× 10−10 GeV−1 (173)

4.0.4 Helium Ignition and White dwarfs/Red Giants

If the axion couples directly to the electron, as in the DFSZ model, the dominant
emission processes would be via Compton scattering and axion Bremstughling

1. γ + e→ e− + a

2. e− + Z → Z + e− + a

These processes would act as energy sinks within white dwarfs and red giants causing
the helium ignition to be delayed. If helium ignition is delayed, this will give more
time for the core to grow and pushes the RGB to brighter stars. Thus, the RGB
can act as a sensitive probe for axion emmision by looking at the brightness of the
brightest stars within the branch. The constraints obtained from RGB and white
dwarf numerical models on the axion-electron coupling is

gaee < 2.5× 10−13 (174)

From table two we find

fa > 1.3× 109 GeV and ma < 4.5 meV for cos2β =
1

2
(175)

4.0.5 SN 1987A

The most restrictive limits on axion-nucleon couplings arise from the neutrino signal
of SN 1987A. The contributing process is axion Bremsstrahlung by nucleons N+N →
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N +N + a. With a small coupling strength, the axion, if present, would amplify the
role of the neutrino and reduce the burst time and gives a lower limit of the coupling
strength. If the coupling strength is large, a larger number of axions are captured in
the core of the neutron star and reduce the cooling effect. This produces a bottleneck
on the allowed couplings. The obtained constraints are

3× 10−10 < gaNN < 3× 10−7 (176)

If the coupling strength becomes even larger than this, the axion as well as the
neutrino would be observed. We can place further limits based on observation

10−6 < gaNN < 3× 10−3 (177)

This translates to limits on fa and ma

fa ≥ 4× 108GeV and ma ≤ 16 meV (178)

For Cp = −0.4 and Cn = 0. The astrophysical and cosmological bounds are summa-
rized in Figure (5).
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Figure 3: [13] Diagram outlining some of astrophysical and cosmological bounds on
fa and ma.

5 Terrestrial Search for Axions

There are a number of ongoing experiments to detect the axion at a number of
different mass ranges. I will describe a few experiments which are attempting to
detect the axion by utilizing a reverse Primakoff reaction (a+ γvirtual → γ). These
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5.1 Solar Axions

experiments are well suited for detecting axions in a mass range of < 10−5 eV. I focus
on these because if the axion is detected in this mass range, axions could potentially
be the dominant component of dark matter.

5.1 Solar Axions

The sun is potentially a large source of axions. The axion flux coming from the sun
is estimated to be

dΦa

dE
= g210 6.0× 1010cm−2s−1keV−1E2.481e

−E
1.205 (179)

The integrated flux over the sun is

Φa = g210 3.75× 1011cm−2s−1 (180)

Which means the solar axion luminosity is given by

La = g210 1.85× 10−3L⊙, L⊙ = 3.86× 1033 erg s−1 (181)

The distribution can be seen in Figure (6). The maximum is at 3.0 keV with and
average of 4.2 keV with a slight dependence on the solar model used to integrate the
flux.

Figure 4: [16] The estimated energy distribution of axions coming from the sun.

The most sensitive axion experiments, at the present time, in the mass range of
10−5 ≤ ma ≤ 1 eV are axion helioscopes, i.e. magnetic solar telescopes. The
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5.2 Microwave Cavity Searches

underlying physical principle was first proposed by P. Sikivie in 1983. If axions are
produced in the sun, they would reach the earth in ∼500 seconds as an approximately
parallel axion beam. The helioscope on earth converts the axion via the reverse
Primakoff reaction a+ γvirtual → γ with the virtual photon provided by an external
magnetic field (Figure 7). The photons leaving the reverse reaction have the same
energy and momentum as the axion and having an energy distribution as seen in
Figure (6). An x-ray detector placed at the end of the magnetic field collects photons
and looks for axion signatures above background.

The earliest helioscope searches were preferomed at Brookhaven and Tokyo. The
first one that reached the “axion line” was carried out by CAST (CERN Axion Solar
Telescope) was built in 2002 at CERN [23]. They made a detector with B=9.0 T
and length 9.26m. The detector could be adjusted ±8o vertically and could observe
for 1.5 hours during sunrise and sunset. They increased the sensitivity by filling the
chamber with pressurized helium. The most recent data acquired from CAST did
not see a signal but did obtain a upper limit [22].

gaγγ < 0.66× 10−10 GeV−1, 95%CL ma < 0.02 eV (182)

5.2 Microwave Cavity Searches

Microwave cavity detectors are similar to helioscopes in that they also use the reverse
Primakoff reaction to detect a axion-converted photon. The main difference is that
theses detectors have a sensitivity region below ma ≈ 10−5 eV and thus search for
dark-matter axions. The conversion of non-relativistic axions produces photons in
the microwave range. The idea is to place a microwave cavity in a strong magnetic
field and wait for cavity modes to be excited by the axion field. Microwave cavity
searches such as ADMX (Axion Dark Matter eXperiment) us a cylindrical copper
tube placed within a magnetic bore where dark-matter axions can resonantly convert
into real microwave photons with energy E ≈ m2

a + (1/2)m2
aβ

2. In this way we
can view the electromagnetic modes of the cavity and the free axion field modes as
coupled oscillators via Eq.(153) where B is the external static field and E is from
an electromagnetic cavity mode. Power is transferred from the axion field to the
cavity excitations via oscillator beats caused by the weak coupling between the two
fields. The ADMX experiment excluded KSVZ dark-matter axions with mass between
1.9-3.53 µeV [24]. The upgraded version of ADMX experiment will eventually cover
a mass range of 1-100 µeV.

34



5.3 Laser Induced

5.3 Laser Induced

Complementary to the solar and dark-matter axion searches, laser induced axion
searches provide another way to obtain limits on axion parameters. Laser induced
axion experiments utilize, yet again, the Primakoff reaction γ + γvitual → a. The
experiments try and produce axions by shining polarized laser beams through a
transverse magnetic field. So called “light shining through a wall” experiments block
the laser at some point on the path which only allows weakly-interacting particles to
pass through (see Figure 8) [21].

Figure 5: [19] This figure shows the experimental set up for the light shining through
walls experiment.

The pioneering experiment of this kind was done by Brookhaven-Fermilab-Rutherford-
Trieste (BFRT) collaboration [20]. They used two superconducting dipole magnets
to provide a magnetic field strength of B=3.7 T with an optical laser of λ= 514nm
and an average power of ⟨P ⟩ = 3W. The experiment found no photon regeneration
but obtained a upper limit on gaγγ [25].

gaγγ < 3.5× 10−8 GeV−1(95%CL), ma < 2× 10−4 eV (183)

6 Axions as Dark Matter [13]

The story of the axion as a dark matter candidate begins at the cosmic temperature
T ∼ νPQ when the higgs field σ obtains a VEV due to the spontaneous breakdown of
U(1)PQ. The Nambu-Goldstone axion is produced in the process and the universe
continues to cool. At T ≤ ΛQCD ∼ 200 MeV the axion begins to feel the color anomaly
and the winebottle potential is tilted. The axion falls down the valley of the potential
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and oscillates about the minimum. The anomaly producing the potential has an
infinite number of valleys which the axion could fall into each with differing winding
numbers. We don’t know which of the n valleys the axion chooses but for simplicity
we can consider the n = 0 valley. The axion obtains a mass at ΛQCD which grows
with time and reaches an asymptotic value which still remains to this day. We can
describe the oscillations of the axion field by setting Θ = ⟨a⟩ /fa and approximating
the Lagrangian as

L ≈ f 2
a

[
1

2
Θ̇2 − 1

2
m2
aΘ

2

]
(184)

The equation of motion produced from the above Lagrangian is that of a harmonic
oscillator. However, during the time of these oscillations the universe is expanding.
We can incorporate this expansion effect by rewriting our action in terms of the
Robertson-Walker scale factor a(t) to

∫
La(t)3d4x. The resultant equation of motion

is given by
Θ̈ + 3H(t)Θ̇ +m2

aΘ = 0 (185)

H(t) ≡ ȧ

a
(186)

Where a is the cosmic scale factor and H(t) is the Hubble expansion rate. When
T ≫ ΛQCD the axion is massless and the only solution to Eq (185) is Θ =constant.
During this time, the axion is static, ultra-cold, and in a Bose condensate. When the
axion feels the color anomaly and ma begins to grow until reaching ma(t) ≈ H(t). At
this point, Θ begins to oscillate as a damped oscillator (Θ̈ + 3H(t)Θ̇ +H(t)Θ = 0).
If ma grows slowly we can approximate it by replacing Θ̇2 with its average over the

period ⟨Θ̇⟩2 ≡ λ(t), λ(t) = (Θ̇2 +m2
aΘ

2)/2. Multiplying Eq(185) by Θ̇ and writing in
terms of λ(t)

λ̇

λ
+ 3H(t)− ṁa

ma

= 0 (187)

Solving the differential equation for λ(t) we find

λ(t) = A
ma(t)

a3
(188)

The energy density of the axion field after the effects of the color anomaly are felt is
then

ρa(t) ∼ f 2
aλ(t) (189)

Because the number of axions produced is invariant with expanding volume we can
approximate the energy density of axions at the present time t0

ρa(t0) =
C

2
fa
mπFπT

3
0

MplΛQCD

∼ faΛQCD

MPl

T 3
0 (190)
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Where MPl is the Planck mass. The energy density cannot exceed the present cosmic
density so Eq (190) is constrained

ρa < ρc =
3H2(t0)

8πGNewton

= 11 h2 keV/cm3, (h ≊ 0.72) (191)

Thus places bounds on fa and ma

fa < 1012 GeV (or ma ≥ 10−5eV) (192)

This bound would indicate that fa may be somewhere near the GUT scale. A detailed
analysis by Sikivie gives

Ωah
2 ≈ 0.7

(
fa

1012 GeV

) 7
6
(
⟨Θ(0)⟩
π

)2

≈ 0.3

(
fa

1012 GeV

)
(193)

Where Ωa = ρa/ρc, and ⟨Θ(0)⟩ is the average initial value for small oscillations about
the zero point of the value. The most recent observed value of ΩDMh

2 = 0.1187±0.0017
by Planck, we can calculate the mass of the axion which would contribute to dark
matter.

ma ≊ 6 µeV

(
1012 GeV

fa

)
, (fa < 0.5× 1012 GeV) (194)

7 Conclusion

I’ve reviewed many aspects of the axion in this paper. I’ll end by reiterating some of
the main properties of the axion.

1. If the axion exists, it solves the strong CP problem.

2. The axion is a psuedoscalar particle with JP = 0−.

3. The fundamental properties of the axion are almost essentially determined once
the VEV fa is determined.

4. The axion mass is given approximately by ma ≈ Fπmπ

fa
.

5. The axion couples to the electromagnetic field via gaγγaE · B with strength
gaγγ ∼ α/(πfa).

6. For ma = 10−3 ∼ 10−6 eV, the axion could be a dominant component of dark
matter.
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