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Abstract

The quantum electrodynamics (QED) tree-level automatic matrix element
generator (qtAMEG) generates all contributing Feynman diagrams for 2 → 2
tree-level processes. The program allows the user to input any allowed 2 → 2
QED (polarized or unpolarized) process along with a specified solid angle and
receive an estimation for the differential scattering cross section.
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2 THEORY [1][2]

1 Introduction
The calculation of the total scattering cross section is a marquee computation in
high energy particle physics. The cross section bridges the gap between pen and
paper or, in this case, source code and computer and collider experiments. It is the
ultimate probe and testing ground to our theoretical understanding of fundamental
high energy physics.

The theoretical calculation of the total cross section by hand is a long and tedious
process prone to errors. Particularly, the most laborious process is the generation
and evaluation of all contributing matrix elements or Feynman diagrams. Tree-level
calculations, if one is proficient, can be done optimistically in under an hour. Second
order and higher calculations however, become extremely laborious and can take days,
weeks, or even months to compute the contributions of just one diagram. Not only
do the individual diagram calculations become extremely computationally complex
but the number of diagrams with each successive order increases significantly [5][6].
For example, computing contributions to the electrons gyromagnetic ratio to tenth
order in perturbation theory involves the evaluation of 12,672 diagrams [7]. These
problems segue into the need for algorithmic generation and evaluation of Feynman
diagrams and matrix elements.

There are a number of already existing software packages such as MadGraph [9] and
WHIZARD [8] which tackle the problem of automatically generating and evaluating
matrix elements at tree level and next leading order (NLO). My quantum electro-
dynamic tree-level automatic matrix element generator or qtAMEG aims to generate
contributing matrix elements for 2 → 2 tree-level QED processes in order to obtain
differential scattering cross sections.

2 Theory [1][2]

2.1 QED

Quantum electrodynamics (QED), a relativistic quantum field theory that describes
the electromagnetic interaction of quarks and leptons, is one of the most accurate
physical theories in Physics. With determinations of the fine structure constant α via
field-theoretic calculation in QED and experiment agreeing to roughly one part per
million[4].

α−1
exp = 137.03599878(91), α−1

theory = 137.035999710(96) (2.1)
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α−1
exp − α−1

theory = −0.93(0.92)× 10−6 (2.2)

In qtAMEG the calculation of the transition amplitudes are based upon a perturbation
expansion in powers of the fine structure constant α. A detailed explanation of these
calculations is out of the scope of this manual, to remain self-contained I will outline
the calculation below.

2.2 S-matrix

The evolution of a free particle state with energy E from t = t1 to t = t2 is given by
the unitary time evolution operator

U(t2, t1) = exp [−i(t2 − t1)E] (2.3)

The time evolution of a scattering process can be effectively described by an object
called the scattering matrix (S-matrix). If we assume that our interactions occur at
short distances then the whole of the interaction takes place in a finite time frame
−t0/2 < t < t0/2. The S-matrix is described as the product of unitary time evolution
operators

Sfi = U−1
f (t0/2, 0)Ufi(t0/2,−t0/2)U−1

i (0,−t0/2) (2.4)

Where the initial and final free particle unitary time evolution operators are given
by,

Ui(0,−t0) = exp

[
−it0/2

ni∑
i=1

Ei

]
, Uf (t0, 0) = exp

[
−it0/2

nf∑
j=1

Ej

]
(2.5)

The sums runs over the ni initial particles and nf final particle states. Given an
initial state |i⟩ and final state |f⟩ we can write the Sfi matrix element in terms of a
transition element Tfi and an identity element corresponding to no scattering

Sfi = ⟨f |i⟩+ i(2π)4δ4(pi − pf )Tfi (2.6)

Where the four-dimensional delta function ensures energy and momentum conservation.
The transition probability Pfi is given by the modulus of the S-matrix element, for
i ̸= f we have

Pfi = |Sfi|2 = [(2π)4δ4(pi − pf )]
2|Tfi|2 = t0V (2π)4δ4(pi − pf )|Tfi|2 (2.7)

Where V is the volume of our imaginary enclosed box.
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2 THEORY [1][2] 2.3 Kinematics

The total scattering cross section for two body scattering a+ b → n scattering process
is given by

σ2→n =
Nn

2t0V
√

λ(s,m2
a,m

2
b)

(2.8)

Where Nn is the total number of events detected in the detector, and

λ(s,m2
a,m

2
b) =

(
s− (ma +mb)

2
) (

s− (ma −mb)
2
)

(2.9)

s = (Ea + Eb)
2 = (pa + pb)

2 (2.10)

The total number of events in the detector Nn is defined as

Nn =

∫
|Sab→n|2dLips(p1, p2, · · · , pn) (2.11)

Where the Lorentz invariant phase space is defined as

dLips ≡ 1

(2π)3n

n∏
i=1

d3p

2Ei

(2.12)

Thus, the scattering cross section is expressed in terms of transition amplitudes is
given by

σab→n =
1

2
√

λ(s,m2
a,m

2
b)

∫
(2π)4δ4(pi − pf )dLips(p1, p2, · · · , pn)|Tfi|2 (2.13)

Where pi = pa + pb and pf =
∑n

j=1 pf,j

We see explicitly now that the calculation of the total cross section can be split into
two pieces:

1. Determine the size of our kinematically available phase space

2. Determine the transition amplitude matrix elements Tfi via the Feynman Rules

2.3 Kinematics

First we need to define the kinematics of the problem. We imagine two particles
speeding towards each other and colliding. We define the following outgoing 4-
momentum

p′1 = (E ′
1,p

′
1), p′2 = (E ′

2,p
′
2), p3 = (E3,p3), p4 = (E4,p4) (2.14)

4



2 THEORY [1][2] 2.3 Kinematics

P ′ ≡ (p′1 + p′2), P ′2 = (p′1 + p′2)
2 = (p3 + p4)

2 ≡ s (2.15)

In the center-of-mass frame we have

p′
1 = p = −p′

2 (2.16)

s = (E ′
1 + E ′

2)
2 (2.17)

Thus,
s = (p′1 + p′2)

2 = m2
1 +m2

2 + 2p′1 · p′2 (2.18)

p′1 · p′2 = E ′
1E

′
2 − p′

1 · p′
2 = E ′

1E
′
2 + |p′|2 (2.19)

Plugging back into Eq.(2.18)

s = m2
1 +m2

2 + 2(E1E2 + |p′|2) (2.20)

(s−m2
1 −m2

2) = 2(E1E2 + |p′|2) (2.21)

Remembering that E1 =
√

m2
1 + |p′|2 and E2 =

√
m2

2 + |p′|2 we find that the
following relation is true

|p′|
√
s =

1

2

√
λ (2.22)

Now that we have all of the necessary kinematic information let’s begin the calculation.
We start with the definition of the infinitesimal Lorentz invariant phase space (dLips)
of a system with center of mass energy s, and momentum P1, P2, ..., Pn

dLips(s; p1, · · · , pn) = (2π)4δ4(pi − pf )dLips(p1, · · · , pn) (2.23)

For two body phase space we have

dLips(s; p′1, p
′
2) = (2π)4δ4(p′1 + p′2 − p3 − p4)

1

(2π)6
d3p3

2E3

d3p4

2E4

(2.24)

Now, we can split up the four dimensional delta function into two delta functions. One
which ensures conservation of momentum and the other which ensures conservation
of energy.

=
1

16π2
δ3(p− p3 − p4)δ(

√
s− E3 + E4)

d3p3

E3

d3p4

E4

(2.25)

In the center of mass frame p = 0 so

=
1

16π2
δ3(p3 + p4)δ(

√
s− E3 + E4)

d3p3

E3

d3p4

E4

(2.26)
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In the center of mass frame we can now integrate over p4

=
1

16π2
δ(
√
s− E3 + E4)

d3p

E3E4

(2.27)

We can rewrite the momentum space volume differential

d3p = |p|2 sin θd|p|dθdϕ = p2dpdΩ (2.28)

Where sin θdθdϕ = dΩ is the differential solid angle and p ≡ |p|. Plugging this result
into Eq.(2.27)

=
1

16π2
δ(
√
s− E3 − E4)

p2dpdΩ

E3E4

(2.29)

We can rewrite the differential momentum in the following way

E = E3 + E4 =
√
m2

3 + p2 +
√

m2
4 + p2 (2.30)

dE

dp
=

p√
m2

3 + p2
+

p√
m2

4 + p2
=

p

E3

+
p

E4

=
p(E3 + E4)

E3E4

(2.31)

dp =
E3E4dE

pE
(2.32)

Plugging back into Eq.(2.29) we get

=
1

16π2
δ(
√
s− E)

pdEdΩ

E
(2.33)

After integrating over E we are left with

dLips(s; p′1, p
′
2) =

1

16π2

pdΩ√
s

(2.34)

Using Eq.(2.22) and defining |p′| ≡ p′

dLips(s; p1, · · · , pn) =
1

8π2

p

p′
dΩ√
λ

(2.35)

From Eq.(2.13), the differential cross section is now given by

dσab→bc

dΩ
=

1

2
√
λ

1

8π2

p

p′
dΩ√
λ
|Tfi|2 =

1

64π2s

p

p′
|Tfi|2 (2.36)
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2 THEORY [1][2] 2.4 Feynman Rules

Reinstating all dimensionful quantities we are left with

dσab→bc

dΩ
=

(
ℏc
8π

)2
p

p′
1

s
|Tfi|2 (2.37)

The in qtAMEG where both particles will be traveling with equal and opposite momenta
oriented along the z-axis, the outgoing momenta can be parameterized as follows

p3 = (E1, q sin θ cosϕ, q sin θ sin θ, q cosϕ), p4 = (E1,−q sin θ cosϕ,−q sin θ sin θ,−q cosϕ)
(2.38)

with, q =
√

E2
1 −m2

3.

All that’s left is to determine the transition matrix elements.

2.4 Feynman Rules

In QED there is only one interaction vertex denoted ff̄γ (see Figure 1).

f

f̄

γ

Figure 1: QED vertex

For 2 → 2 tree-level processes there are only three potential contributing diagrams
in QED, namely s, t, and u-channel diagrams (Figure 2) corresponding to different
transfers of momentum between incoming and outgoing particles.

s-channel t-channel u-channel

Figure 2: Feynman diagrams for s, t, and u-channel diagrams
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2 THEORY [1][2] 2.4 Feynman Rules

To calculate all contributing transition amplitudes Tfi from Feynman diagrams for
2 → 2 scattering, we follow these steps

1. Draw all two-vertex diagrams allowed by the QED vertex (see Figure 1)

There are six possible external lines in QED

(a) Incoming particle ( ): u

(b) Outgoing particle ( ): ū

(c) Incoming antiparticle ( ): v̄

(d) Outgoing antiparticle ( ): v

(e) Incoming photon ( ): ϵµ

(f) Outgoing photon ( ): ϵ∗µ

2. Associate each external and internal line with a momentum.

3. Associate each vertex with a factor of

igγµ (2.39)

Where γµ is the four-component vector of Dirac matrices and g = −2q′
√
π

where q′ is the charge of the particle in the vertex.

4. The internal line contributions for photons and fermions are as follows

For photons:
−igµν
q2

(2.40)

For fermions:
i(γµqµ +mc)

q2 −m2c2
(2.41)

Where q represents the momentum transferred from the external lines to internal
line through the vertex. From energy and momentum conservation each of the
respective diagrams in Figure 2 have corresponding q’s according to

s-channel:
q = s ≡ (p1 + p2)

2 = (p3 + p4)
2 (2.42)

t-channel:
q = t ≡ (p1 − p3)

2 = (p2 − p4)
2 (2.43)
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2 THEORY [1][2] 2.5 Gamma matrices, Spinors, Polarization vectors [3]

u-channel:
q = u ≡ (p1 − p4)

2 = (p2 − p3)
2 (2.44)

5. Starting from an outgoing fermion line or incoming anti-fermion line, write down
each external line, vertex, external line contribution as you trace backwards
alone the fermion. Do this for all external lines and then include the internal
line contribution, be careful and ensure indices are correctly matched.

6. If two diagrams differ by only the interchange of two incoming or outgoing
fermions, add a relative minus sign between the two diagrams. This takes into
account the antisymmetric property of identical fermions.

For example in Møller scattering (e−e− → e−e−) there are two contributing diagrams,
namely t and u-channels. The Feynman diagram for the t-channel is given in Figure
3

p1

p2

q

p3

p4

u

u

ū

−igµν
q2

ū

e−

e−

e−

e−

igeγ
ν

igeγ
µ

Figure 3: Example t-channel diagram for e−e− → e−e− scattering

The corresponding matrix element for Figure 3 is given by

Te−e−,t =
−g2e

(p1 − p3)2
[ū(p4)γ

µu(p2)][ū(p3)γµu(p1)] (2.45)

2.5 Gamma matrices, Spinors, Polarization vectors [3]

We follow the same conventions as in [3].
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2 THEORY [1][2] 2.5 Gamma matrices, Spinors, Polarization vectors [3]

2.5.1 γ matrices

In the Weyl-basis the γ matrices are defined as follows

γµ =

(
0 σµ

+

σµ
− 0

)
(2.46)

Where
σ± ≡ (12×2,±σ⃗) (2.47)

And σ⃗ is a vector of the three Pauli matrices.

2.5.2 Spinors

For the u and v spinors we first define the helicity-eigenspinors χ+ and χ−

χ+(p) =
1√

2|p|(|p|+ pz)

(
|p|+ pz
px + ipy

)
(2.48)

χ−(p) =
1√

2|p|(|p|+ pz)

(
−px + ipy
|p|+ pz

)
(2.49)

These spinors satisfy
σ⃗ · p⃗
|p|

χλ(p) = λχλ(p) λ = ±1 (2.50)

In the limit where py = 0 and px → +0

χ+(p) =

(
0
1

)
(2.51)

χ−(p) =

(
−1
0

)
(2.52)

The four spinors u and v are then defined as

u(p) =

(
ω−λ(p)χλ(p)
ωλ(p)χλ(p)

)
(2.53)

v(p) =

(
−λωλ(p)χ−λ(p)
λω−λ(p)χ−λ(p)

)
(2.54)

Where
ω±(p) ≡

√
E ± |p| (2.55)
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3 MAMEG ALGORITHM

2.5.3 Photon Polarization Vectors

For the photons helicity eigenvectors we first define two polarization vectors

ϵµ1(p) =
1

|p|pT


0

pxpz
pypz
−p2T

 (2.56)

ϵµ2(p) =
1

pT


0

−py
px
0

 (2.57)

where
pT =

√
p2x + p2y (2.58)

The helicity eigenvectors for helicities λ = ±1 are given by

ϵµ(p, λ = +1) =
1√
2
(−ϵµ1(p)− iϵµ2(p)) (2.59)

ϵµ(p, λ = −1) =
1√
2
(ϵµ1(p)− iϵµ2(p)) (2.60)

For pT → 0 we fix our polarization to

ϵµ2(pz) =


0
pz
0
0

 (2.61)

3 mAMEG Algorithm

3.1 Classes and Methods

An overview of the main mAMEG classes and methods:

1. Process(process)

The Process class contains methods for creating contributing Feynman diagrams
and matrix elements. The constructor takes a string as its argument which
contains the process of interest. In mAMEGv1.0 only 2 → 2 QED processes are
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3 MAMEG ALGORITHM 3.1 Classes and Methods

allowed. The notation for the input string is "a b > c d" where a, b, c,
d are the incoming and outgoing particles of interest separated by ">". For
example,

"e+ e- > mu+ mu-"

"e- gamma > e- gamma"

"gamma gamma > e+ e-"

(a) .diagrams()

The diagrams method creates and stores the contributing Feynman di-
agrams and matrix elements. Upon calling diagrams() a new directory
within the current working directory is created where both the LATEX script
and Feynman diagram figures are stored. Along with creating and storing
diagrams the diagrams() method returns a list of lists of strings which
contain all of the contributing matrix element expressions of the form
[s_element, t_element, u_element] where each element has a default
value of None. For example in "e- e+ > mu- mu+" scattering the only
contribution is from an s-channel diagram. The method creates and stores
the following diagram

e−

e+

mu+

mu−

and returns a list

[[‘self.p3.wbar()’, ‘1j*self.dmu[mu]’, ‘self.p4.w()’, ‘-1j/s**2’,

‘self.p1.wbar()’, ‘1j*self.dml[mu]’, ‘self.p2.w()’], None, None]

2. Particle(data, momentum, helicity)

The Particle stores all of the particle data required to perform cross section
calculations. The class is initialized with an instance of ParticleData taken
from the ParticleDatabase (see Appendix A), the particle momentum, and
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3 MAMEG ALGORITHM 3.1 Classes and Methods

the particle helicity. The helicity has a default value of None which corresponds
to unpolarized initial and final state particles.

(a) .w() and .wbar()

These methods compute the appropriate Dirac spinor used in the calcula-
tion of the matrix elements. See section two above or Appendix A.1 of [3]
for details.

(b) .e()

This method computes the helicity eigenvectors for the external photon
states used in the computation of matrix elements. Again, see section two
above or Appendix A.2 of [3] for details.

3. Collide(process, particle1, particle2, particle3, particle4)

The Collide class implements the calculation of the differential cross-section.
The constructor takes the 2 → 2 process of interest as a string and the particle
data of the four particles in the form of instances of the ParticleDatabase class.

(a) .me()

The .me() method creates an instance of Process(process).diagrams()
to generate the diagrams of the process and return the list of contributing
matrix elements. The list of contributing matrix elements are multiplied
and each amplitude is summed together with appropriate signs based upon
the antisymmeterization of the matrix elements (see Rule 6 in section
2.4). The method returns a complex number representing the sum of all
contributing transition amplitudes.

(b) .xs()

The .xs() method implements the calculation of the differential cross
section. If the initial and final helicity states are specified by the user,
the .me() method is called to obtain the transition amplitude of the
process. The modulus squared of this value is taken to obtain the transition
probability and plugged into our derived expression for the differential
scattering cross section Eq.(2.37). If the initial and final particles are
unpolarized (i.e. helicities are unspecified and take the default value of
None) then the matrix element is calculated for each helicity configuration
and the transition probability is averaged over the initial helicity states
and summed over all final helicity states.
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3.2 Using qtAMEG

Typical usage of qtAMEG is as follows

1. Create an instance of the ParticleDatabase() class

pdb = ParticleDatabase()

2. Define momentum FourVector objects corresponding to your interested collision.
Note that the momenta of particles three and four will be replaced in the
calculation of the cross section.

p1 = FourVector(-1, 0, 0, 40)

3. Create the four Particle() class instances

particle1 = Particle(pdb["e-", p1, +1])

4. Create Collide() class instance with relevant process and matching particle
info. Make sure that the order of the particles in the process string match the
order of the input particle info.

C = Collide("e- e+ > e- e+", particle1, particle2, particle3, particle4)

5. Initialize Intregrator class instance with C.xs() as an argument, along with
interested solid angle

i = Integrator(C.xs, 0, pi, 0, 2*pi)

6. Run the Monte-Carlo integration method within the Integrator() instance to
obtain the scattering cross section for the solid angle of your choice in units of
m2.

totxs = i.mc(1000)

4 Results
The table below shows the results obtained using qtAMEG for common tree-level QED
processes. In order to check the accuracy of the computed unpolarized cross section I
have used the invariance of the helicity averaged cross section under boosts. For each
computed cross section, I have checked to see if the cross section remains the same
after the original momenta are boosted along the z-direction by velocity βz via the
transformation

p⇝ Λzp (4.1)
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With

Λz =


γ 0 0 −γβz

0 1 0 0
0 0 1 0

−γβz 0 0 γ

 (4.2)

The results are as follows

Process Total unpolarized
σ [mb]

Boosted unpolarized
total σ [mb]

e+ µ → e+ µ 1.38× 10−8 1.34× 10−8

e− + e+ → e− + e+ 2.03× 10−3 3.02× 10−3

e− + e+ → γ + γ 2.24× 10−7 2.54× 10−7

e− + e− → e− + e− 2.05 1.08× 10−1

e− + γ → e− + γ 4.83× 10−5 3.13× 10−8

Table 1: This tables shows the boosted and unboosted total scattering cross sections
for common QED process calculated using qtAMEG at beam energies of 40 GeV and

1000 Monte-Carlo steps.

The results show that some of the cross sections are not invariant under the boost.
This of course indicates that there is an error in the calculation and will need to be
corrected in qtAMEGv1.1, I suspect that there is a combination of issues with the
polarzation eigenstates and kinematics. Because qtAMEG only computes tree-level
processes, a more thorough check would be to compute each cross section by hand
and compare numerical results. To verify even further we could also compare to other
automatic matrix element generators.

5 Conclusion
Given a QED process with appropriate syntax, qtAMEG successfully generates all
contributing tree-level processes. Additionally, the program is able to correctly
generate and output Feynman diagrams in a useful LATEX format. We have also
successfully produced boost-invariant spin-averaged total cross sections for a number
of QED processes. Further work and debugging must be completed to achieve invariant
scattering cross sections for all QED processes. In future versions of qtAMEG I would
like to implement the weak vertex and improve upon the interface between user and
program. Also, the runtime when averaging over photon polarizations is noticeably
sluggish- approximately 10 minutes for 1000 MC points. This run time can be reduced
by 1. Utilizing multiple cores and 2. Optimizing the python code. For future versions
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5 CONCLUSION

I would like to parallelize the code and optimize for speed. The qtAMEG program is a
stepping stone towards complete autonomous calculations of tree-level QED cross
sections and even in its current form is a useful tool for generating contributing
Feynman diagrams.
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