FunFlows: Functional Renormalization Group
for O(1) Scalar Field Theory in d-dimensions

Tony Menzo

Abstract

FunFlows is a symbolic and numerical software library that implements
functional renormalization group methods to compute the beta-functions and
fixed-points of a O(N)-symmetric scalar field theories in d-dimensions.

1 FUNCTIONAL RENORMALIZATION GROUP

1 Functional Renormalization Group

In quantum field theories all physical content is stored in n-point correlation func-
tions
1 AN
<¢z<l’1)¢](l‘2) ce ¢k($n)> — Z[O] 5Jz($1)5<]]($2) . 6Jk(l‘n) o

(1.0.1)

Where Z[J] is a generating functional of correlation functions. The core entity in
functional renormalization group is the scale dependent effective average action
['x[®;] where the scale is parameterized by k. The effective action interpolates between
a microscopic UV description for the bare action at a reference scale k = A and a
macroscopic description at low energies described by the full quantum action, with
k=0.

Fioa = Share Io=T (1.0.2)

The scale parameter k acts as an infrared regulator suppressing quantum fluctuations
with momentum less than k. This allows us to integrate out quantum fluctuations in
a controlled manner and study how models evolve with scaling.

The IR regulated generating functional is given by

eVelll = Z,[J] = exp (—ASk {%D Z[J) = / Dgle SWI-aslolt[Jioi (10,3
Where . . g
ASk[g] = §¢iR?¢j = 5/ (27;;6[(Zﬁq)dsz(% ¢)¢a(q)P6(q") (1.0.4)
With R(q,q') = R(q)6%(q — q) acting as a mass-like regulator
1 [d
-5 [Gt @su a0 (105

Where the regulator function Rj must satisfy the following properties
1. limg k2,0 Ry > 0 (implements IR regularization for the path integral)
2. limy2 /g2, Ry, = 0 (regulator must vanish for k& — 0)

3. limy_p 00 Rr = oo (functional integral is then dominated by the stationary
point of the action)

1 FUNCTIONAL RENORMALIZATION GROUP

For this analysis we will use Litim’s “optimized regulator”[2] given by

Ri(p) = (K* —p°) © (K* — p?) (1.0.6)
This regulator has many advantages, the most notable being that it will allow us
write down analytic expressions for the S-functions.

The effective average action is then defined as a modified Legendre transform of

WJ]

[.[®] = sup (/[—Wk[J] + @iJi]) — %@iRiﬂ‘cbj (1.0.7)

To study the intermediate flow behavior we first define

Eoog =kl (1.0.8)

P R
T dk

The flow of the average effective action is then described by the Wetterich equation

1]

0,74 [®] = %Tr (C210] + Ry) o] (1.0.9)

The trace should be interpreted as a basis independent way of writing down the
scaling evolution.

Tr[0] = > (W:[0]W;) (1.0.10)
Where the ¥; form a complete orthonormal basis of eigenstates (see Appendix

A).

The flow or S-functions of masses, coupling constants, wave-function renormalization,
etc. can then be obtained via a projection operator

11 |
1L O, Tk [@] = —%aé)cagf (DT [®.e)) (1.0.11)

|
I! $®.=0,q=0

2 O(1) SCALAR FIELD THEORY

2 O(1) Scalar field theory

2.1 ¢* theory B-functions in d-dimensions

The effective average action of an O(1) scalar field theory with potential V(®?) is
given by (for a detailed calculation see Appendix B)

TL[®] = / 'z B(‘?“@(x)@ﬂ)(x) +VA(®) (2.1.1)

Introducing the notation V}/(®?) = §V,(9?)/dP* we have
TP @] = —07 + 2V{(9%) + 407 (2)V"(9?) (2.1.2)

Plugging our result into the Wetterich equation we have

1 8tRk
ol L 2.1.
O[] = 5 r[[_82—1—2‘/,;—1—4(1)2@)‘/”4-]%/%]] 219

The trace involves integration of position and momentum space

. 1 d ddp @Rk
OlHl®] =5 / v / (27) {[p2 oV A2V + Rk]} (2.1.4)
_ 1 d OO ~~d/2—1 O Ry
~ (4m)d2T(d/2) / d x/o app {[ﬁ + 2V 4+ 492(z)V" + Ry

Where I'(d/2) refers to Eulers gamma function and p = |p|. Plugging in Litim’s
regulator noting that 9, RE(p) = 2k*0(k* — p?)

(2.1.5)

242 Y AP 1
o8 = g | e] 01
2 1 1
KW = G e (ar) {[1@2 v 4c1>2(x)m] (2.1.7)

If we consider stationary field configurations the kinetic term drops out and we are
left with

o 2 1 1
OV ®) = G a) {[1@2 T2V + 4<I>2(x)V”]] (2.1.8)

2 O(1) SCALAR FIELD THEORY 2.2 Fixed points

To analyze the problem further we need to make an explicit choice for the potential.
One choice is to take a Taylor expansion in powers of p = &2

V(p) = danp” (2.1.9)

The couplings can by extracted from the exact renormalization group flow equation
via

1 13
Agn = LoV (2.1.10)
nl p™ | g
Likewise, the f-functions can then be obtained via
1 o"
Bon = Opdon = —7—0V (2.1.11)
n! dp p=0

Now we redefine the couplings and fields to obtain the dimensionless S-functions

d=k2"0 (2.1.12)
A = gld=2n=d), (2.1.13)
O dan = ((d — 2)n — d)Agp + KI5, (2.1.14)
Vi(p) = k~Vi(p) (2.1.15)
Eq.(2.1.8) becomes
OVi, = —dV + (d - 2) 742 = ! (2.1.16)
Yk = PY T d@r)iT(d)2) |1+ 2V] + 4pv” o

The equation above is the basis for what is done in scalarFRG. Obtaining the (-
functions for the dimensionless couplings is now a matter of applying Eq. (2.1.11).

2.2 Fixed points

Ultimately the g-functions allow a way to non-pertubatively analyze the UV behavior
of our theory. Of particular interest are are stationary or fixed points i.e. positions
in theory space in which all g-functions are zero. The trivial solution corresponding
to Adg = Ay = --- = Ay, = 0 is called a Gaussian fixed point. These fixed points
correspond to a free theory with no interactions. Non-trivial solutions, corresponding
to renormalizable interacting theories, are called Wilson-Fisher fixed points and are
the main motivation in what follows.

3 SCALARFRG

3 scalarFRG

The main goals of this program are to

1. Compute the 3-functions for a d-dimensional O(1) scalar field theory for an
nth order potential using the SymPy computer algebra package

2. Given the B-functions compute Wilson-Fisher fixed points

3. Create theory space flow-plots

3.1 Root-finding

Finding Wilson-Fisher fixed points amounts to finding the simultaneous roots of the
[-functions. Depending on the truncation order we end up with a system of coupled
non-linear equations of the form

62(5\275\47"' 75‘211) 0
BZ,L()\Q))\47 T a>\2n) =0

(3.1.1)
B2n(5\27 5\45 T 75\2n) =0

Defining A = (A, Mg, , Aap) and B = (Ba, B4, -, Bn) we can write the above
system of equations as
B(A)=0 (3.1.2)

Solving this problem numerically can be broken up into two parts: 1. Numerically
finding roots and 2. Solving system of equations
3.1.1 Newton-Raphson

The Newton-Raphson method is a simple and fast algorithm for finding roots of
simultaneous equations. We start with the series expansion of 5;(A) about the point

A
BiA +AA) = B(A) + 3 2 AN+ 0(AN) (3.13)
= O\
The above can be written compactly as
B(A+ AA) =B(A) +J(A)AA (3.1.4)

3 SCALARFRG 3.1 Root-finding

Where J is the Jacobian matrix 95
Y
If we consider A to be the current approximation of a fixed point and A + AA as the

improved solution we can set B(A + AA) = 0 and solve for the correction AA. We
find

J;; (3.1.5)

JAA = —B(A) (3.1.6)

We obtain a set of linear equations for AA which must be solved for AA. The
numerical method I chose to implement was Gauss elimination.

3.1.2 GGauss elimination

The Gauss-elimination algorithm is also decomposed into two steps: 1. The elimination
phase in which we convert the Jacobian matrix J into an upper-diagonal matrix

and 2. the back-substitution phase where we plug our results back in and solve for
AA [3].

1. Elimination stage: If we consider an n X n system of equations i.e.

My -+ My -+ My, v
My, ;

M (3.1.7)
Mnl e Mnk ot Mnn Unp,

The elimination stage proceeds by iterating through “pivot” rows. The first
non-zero element in the kth pivot row begins on the diagonal M;;. The rows
above the pivot have already been placed in upper diagonal form. The algorithm
proceeds by eliminating the Mj,th variable from each of the remaining rows
below the pivot row. The row transformations are given by

Mij_)Mij_/{Mkj]:k7k+1, , (318)

V; — V; — KUy (3.1.9)

Where k is chosen to eliminate the Mj, variable from the jth row i.e. kK =

3 SCALARFRG 3.1 Root-finding

2. Back substitution: At this point in the algorithm we are left with a system of

the form
My My Mz -+ My, v
0 My My -+ My, v
0 0 M33 cee M3n U3
: : . . (3.1.10)
0 - 0 - M, v,
The final row is given by the equation
Un,
Mz, = v, n = 3.1.11
Ty = Up ~ X M ()
This value of z,, can now be be placed into the (n — 1)th row
M(n—l)(n—l)xn—l + M(n—l)nxn = Un—1 (3112)
Un
Upn—1 — M(n—l)nM_
Tpo1 = o (3.1.13)
Mn—1)(n-1)

This can be done iteratively until we have the solution for x;. To summarize,
xy from the kth equation (row)

Mz + My py1Tks1 + -+ - + Mppx, = vg (3.1.14)

Is given by

. 1
Tk = (Uk;_ Z Mkjl’j) M—, k:n—l,n—Z, ,1 (3115)
kk

j=k+1

When the dust settles we are left with the solution for the correction vector AA
describing the corrections to \; that bring us closer to the true solution of the root
equations. These corrections are then added to A. This process can be repeated until
the change AA reaches some pre-assigned tolerance or over a prescribed number of
iterations. At the end of the day we are left with a vector of coupling values which
correspond to a fixed point in our theory.

The algorithm can be summarized in the following steps:

1. Provide a guess for the solution vector A

8

3 SCALARFRG 3.1 Root-finding

2. Evaluate B(A)
3. Compute the Jacobian J(A)
4. Set up and solve the simultaneous equations for the corrections AA
5. Set A — A + AA and repeat steps 2-5
There are two obvious pitfalls of the Newton-Raphson method.

1. A solution is not guaranteed. In order for convergence we need to provide a
“good” initial guess. This is especially a problem when dealing with systems of
equations which have no obvious initial solutions (like the S-functions).

2. The algorithm relies on the knowledge of the user-provided Jacobian matrix.
This especially becomes a problem when dealing with a large system of equations
where analytic computation of the derivatives is impractical.

The first issue can be solved by doing an initial search for roots by varying each
parameter individually and seeing when B(A) switches from being positive valued
to negative valued or vice versa indicating a root. This allows the user to have no
knowledge of the solution and still obtain convergence. In scalarFRG I have not been
able to implement this yet, however it is next on my list.

The typical way to solve the second issue is by computing the Jacobian matrix with
the finite difference approximation. I have gone a different route and used SymPy to
compute the Jacobian matrix analytically.

3.1.3 newton_raphson(f, x, guess, N = 30, tol = 10e-8)

I have implemented the above algorithm as newton_raphson within scalarFRG. The
arguments of the method are as follows: f: list of strings in SymPy syntax containing
the system of equations, x: list of strings containing the independent variables of
interest, and guess: list of floats containing the initial guess. For the optional
arguments we have N: number of iterations, set to 30 as default and tol: tolerance of
corrections used to signal termination of the algorithm.

The efficacy of my algorithm was proven by comparing to Mathematica’s NSolve
function. For example the system of equations

sinz+y*+Inz—7=0
3r4+2Y -2 +1=0 (3.1.16)
r+y+z—5=0

3 SCALARFRG 3.2 class 01(d, n)

was solved using newton_raphson ()

f1 = "sin(x) + y**2 + 1n(z) - 7"

2 "3*kx + 2%ky - zxx3 + 1"

2

"x+y+z-b"

root = newton_raphson([f1,f2,£f3],[‘x’,‘y’,‘2z’],[1.0,1.0,1.0])
With the result

Xx,y,z = [0.59905376 2.3959314 2.00501484]

Mathematica’s NSolve gives the indistinguishable result

x,y,z = [0.59905376 2.3959314 2.00501484]

NOTE: I have also implemented two other root searching algorithms (bisection and
secant) as well as a numerical ODE solver (4th order Runge-Kutta) which I have
neglected to save time. Ultimately, I did not use these methods in this version of
scalarFRG. In principle I could use the bisection or secant methods as a security
blanket in the case for which the Newton-Raphson method doesn’t converge. This
will be investigated in the future. The ODE solver will prove useful if I ever need to
solve for the exact flow for two given initial coupling values. For the general analysis
of the scale evolution of a theory it is better to use g-function flow plots and fixed
points as they allow you to determine the asymptotic nature of your theory over the
whole coupling parameter space.

3.2 class 01(d, n)

The 01 class contains methods which implement the three goal stated at the beginning
of this section. The class takes two arguments in its constructor, d corresponds to
the number of dimensions the user would like to compute the S-functions in and
n corresponds to the order of the potential the user would like to expand to. For
example, 01(1,2) corresponds to a scalar field theory in 1-dimension with a potential
of the form V' (p) = Aap + A\sp?.

The constructor takes these arguments and using Eq.(2.1.16) computes the dimen-
sionless [-functions for all n couplings using SymPy. The f-functions are stored as
class variables.

10

3 SCALARFRG 3.2 class 01(d, n)

3.2.1 flow_plot(lambdax, lambday, lamxcenter = 0, lamycenter = 0, w=1.5,
*x*kwargs)

f-function flow plots are extremely useful visual tools in understanding the flow
of parameters in theory space. The plots also allow a better way of seeing and
understanding the flow of parameters around fixed points of a theory. To create these
plots I have utilized MatPlotLib’s streamplot () function.

As arguments the user needs to provide two strings corresponding to flow parameters
(i.e. lambda2, lambda4, ...) the first argument will be plotted on the z-axis and
the second argument will be plotted on the y-axis. The user can choose to plot about
the center point lamxcenter, lamycenter extending a length w on all sides. This
may be useful when one wants to plot near a fixed point solution. If the potential has
been chosen such that n>2 the user must specify the values for all other couplings
which are not being plotted as **kwargs.

For example,
01(3,4) .flow_plot(‘lambda2’, ‘lambda4’,1.235,2.045,1lambda6=0.3,lambda8=0.2)
Produces the following flow plot in which the arrows point from the IR — UV.

3-D O(1) Flow Plot

2.0 o

1.0

|
)

\Q

-

uu 0.5 1.0

0.0

4 OUTLOOK

When the method is ran, a new folder called 01_figs is created in the current working
directory. The figure in this folder under the name flow_d-n-.png. Where the dashes
are replaced by the class variables d and n.

3.2.2 fixed_pts(guess)

The fixed_pts() method takes a list of floats as an argument which is then used
as the initial guess for the Newton-Raphson algorithm outlined in section 3.1. The
method returns a single fixed point of the theory (assuming a “good” guess has been
provided). Currently scalarFRG relies heavily on a good guess provided by the user,
in future iterations I would like to implement the root search algorithm described at
the end of section 3.1 to relieve this burden. Another subtlety is that there may be
more than one Wilson-Fisher fixed point. Finding numerous roots to the g-functions
could also be obtained with the described search algorithm.

3.2.3 texput()

The intended function of the texput method is to provide a summary of the results
given by the 01 class to a I¥TEX file. This includes output of the chosen potential,
the calculated [-functions, fixed points of the theory, and flow plots around the fixed
points of the theory. Currently this feature is only partially implemented.

4 QOutlook

In its current form scalarFRG provides a package for computing S-functions, fixed
points, and flow plots for a d-dimensional O(1) scalar field theory. In the future it
would be interesting to implement, in no particular order, the following:

1. Calculation of critical exponents to label fixed points as attractive or repulsive

2. Implementing an adaptive root search algorithm which will be able to find all
fixed point solutions

3. Using SymPy to compute the flow equations given an effective average action.
For example I could feed in the effective average action given in Eq. (2.1.1) and
return Eq. (2.1.16)

4. Generalizing to d-dimensional O(N) scalar field theories

5. Using different approximation schemes

12

4 OUTLOOK

6. Investigating different regulator function which then may involve numerical
integration of the flow equations

7. Investigating three-dimensional flow plots/identifying flow features
8. Performing the same analysis but for QCD
9. Performing the same analysis but for BSM physics

13

REFERENCES REFERENCES

References

[1] Wetterich, Christof. "Exact evolution equation for the effective potential." Physics
Letters B 301.1 (1993): 90-94.

[2] Litim, Daniel F. "Optimized renormalization group flows." Physical Review D
64.10 (2001): 105007., Litim, Daniel F. "Optimisation of the exact renormalisation
group." Physics Letters B 486.1-2 (2000): 92-99.

[3] Kiusalaas, Jaan. Numerical methods in engineering with Python 3. Cambridge
university press, 2013.

14

5 APPENDIX A

5 Appendix A

To express in a particular representation we insert the complete set of states, for
example in position space the trace is written as

0] = S (WO1) = Y [dtad'y (ifo) («lOl) GIw) (50)
— [dladty (@lOl) 3" Wi @) 0ity) = [diad'y (410l) 8'x ~) = [d'e (alOla)
l (5.0.2)

= / d’zO(x) (5.0.3)

Sometimes it is convenient to work in a momentum basis, performing a Fourier
transform from the position-basis

tW%@@m=/fwwwwmmmmwm (5.0.4)
= (Zi)d / dlxdipdip @2V (p|O]p') (505)

- (2;)61 / d*pd’p (2m)"6(p — p') (p|Op') = / d%p (p|O|p) (5.0.6)
= / @pO(p) (5.0.7)

15

6 APPENDIX B

6 Appendix B

Truncating the potential at n = 2 we have the following effective average action

[x[®] = /ddx szgwﬁ“(b(x)@”@(x) + %miCDQ(x) + —@4(95)] (6.0.1)

Taking a scale derivative of the average effective action yields

Ol'l¢] = /dd:v B(@ka*‘@(x)@ud)(x) + %(&gmi)(lﬂ(x) + (aﬁw@‘l(x)] (6.0.2)

We can project out the coupling S-functions via the projecting operator

11 |
om0 (2] = _%afbca;n (0L k[®ce™])

7 (6.0.3)

$.=0,q=0

For example, to project out 0,2, we will need Il 59y going term by term for explicit-
ness

- / 00 oy 50008, 0 [0,(@ec0) 04 (2607 (6.0.4)
T ®.=0,q=0
—(1)* [2 021 252 2igw
=5 d*20,2:03 07 [¢*DLe*] (6.0.5)
$.=0,q=0
1 , , ,
= - / d'20,2,03, [202¢™97 + BizgP2e* " + (2ix)’¢*Pre* 7] (6.0.6)
8 ®c=0,¢=0
1
== / d'20,2,03, [297] (6.0.7)
8 ®.=0
L[
b d®x0yz (6.0.8)

For the next term we have

111 A 1
/ a1 om2az o2 (@2 _1 / w02 O3, (82 (2ix)’]

21212 bo0qe0 O =0
(6.0.9)
= —/ddxxzatmi (6.0.10)

And finally for the last term

/ det 1o 020 [@leta] (6.0.11)

2121 4171 g T LT o000 h

16

6 APPENDIX B

1 ,
= — [dzO\O] [(4-3)D2e"] =0 (6.0.12)
96 $.=0,q=0
Putting it all together we find
a1 29, 2
H(Q’Q)atrk[(b] = /d T |:§at2k — X atmk] (6013)

The other parameters can be found easily by acting with I3y and I), we are left
with the following three results

1
2,00, [P] = /ddx {58,52;6 — :E28tmz} (6.0.14)
1
I1(2,0)0: L% [®] = 3 / dxoym; (6.0.15)
1

Now we look to the RHS of the Wetterich equation

%Tr (02[@) + Ro) ok = (6.0.17)

First we need to compute Fff) (D]
PTe [RL A L
sstgont = | P s [0 0000] i (i)

w10 |

(6.0.18)
1 52 2 2 L > !
= [ate S [0 (a0 4 md) 0] + et (Zﬁ 19)

For the first term I have integrated by parts (with the assumption that our field ®(x)
vanishes at the boundaries),

d?z[0"P0, @) = — [daxdd*d 6.0.20
1]

17

6 APPENDIX B

Defining A = —2,0% + m} the first term becomes

259(y)

5 {M%z)[@(w)m(m)+@<9”>A5<I>5<z>[®<x)]]
5)

a0t

590y W%‘)A]

=A
The second term gives

1 5 , 4.3 1
= - - % (I)2 —— @2
1550000 ° W) = T M) = 5hd (@)

Putting this all together we are left with

1
F,(f) [®] = —2,0° +m3 + §Ak<1>2(x)]

Now we can plug this into the scale evolution Eq.(1.0.9)

1

1
@Ik [q)] = §TI' \ atRk
[—z;ﬁ? +m3 + 7’“@2(1;) + Rk}
Now we define A = —2,.02 + m% + Ry,
1 1
= §TI' 1 8,5R]€
A {1 + 5&—%@?@)}

Now I can make use of the following operator expansion!

14 AN ()] T i (1" (A n0%()] '

(6.0.21)

(6.0.22)

(6.0.23)

(6.0.24)

(6.0.25)

(6.0.26)

(6.0.27)

(6.0.28)

1For this expansion to be valid the eigenvalues \; of the operator A1\, ®2 must satisfy the

condition |\;] < 1.

18

6 APPENDIX B

Truncating all operators above ®* we are left with

_ %Tr [A—l {1 - %A—uk@?(ag) + i (A‘l)\k@2(x))2 + O(cbﬁ)} atRk] (6.0.29)

(A—1)3Aiq>4(a;)} atRk] (6.0.30)

_1 ~—1_1 A —11\2 2 1
= 2Tr HA 2(A) A ® (a:)+4

Expanding the trace in momentum space (92 ~ i’p? = —p?)

1 d dd|:
p

22
)\

-1

PANAL

2 (p|0D|p) (6.0.31)

b |

/\2 —3

N

(02

{ (2p” + mi + Ri(p))
)

()

(22 + 2+ Ra(p) ™ (p]00DD|p) }atRk]

(Qi)d /ddm / & [{ 2+ mi+ Rk(P))il

(
% (zkp2 +mi + Rk(p))*2 ®?(p) (6.0.32)

A _
+ Zk (ka2 + mi + Ry, (p)) 3 <I>4(p) }@Rk}

Applying the same projection operators (Eq. (6.0.3)) to this expression we are left
with

- |

1
2

2 2)8t1“k dd dd ka2 + mi —+ Rk)_Q a:2(9tRk] (6033)

I1(2,0)0: T [® d?x dd [(zep® + mi + Ry) 20, Ry (6.0.34)
1 d d A% 2 2 -3

IT(4,0)0:Lk[®] = @y dz | d Py [(zep” + mj + Ry,) >0, Ry (6.0.35)

Equating with Eqs.(6.0.14)(6.0.15)(6.0.16) we find the following three relations

/ ddpﬁ [(zka +ml 4 Ry) x28tRk] (6.0.36)

24 .2
—Oyz, — x°0ymy, = 5

2 (2m)d

19

6 APPENDIX B

1 1 A

§atmi =~ / ddpzk [(zep® + mj, + Ry,) "20,Ry] (6.0.37)
Lo = —— ddA—i[(z >+ mj + Ry,) 20, Ry (6.0.38)
4!tk—(2ﬂ_)d p8 kD k k tLug -U.

Plugging the result for d;my in Eq.(6.0.34) into Eq.(6.0.33) we see that

To make further progress we need to choose a regulator function Rj. To start we will
look at the optimized Litim regulator [2]

Ri(p) = 2 (K = p*) © (K = p?) (6.0.40)
Where O(x) is the Heaviside step function. Thus,
O Ry = 22:.k*O(K* — p?) (6.0.41)

Plugging this regulator back in to Eq.(6.0.37)

A 1 B
(9tmi = —?k (@) /ddp [(ka2 + mi + Zk(kQ . p2)@(k2 _ p2)) 2 2zkk2@(k2 _ pz)]
(6.0.42)
_A —
T (2;)d /2) d'p [20” + m} + 2 (K = p*)] 2k’ (6.0.43)
p?<k
Ak d Zka
- d°p | ———7 6.0.44
(2m)? /p2<k2 b [(mﬁ + zkk2)2] ()

Now the problem has been boiled down to computing the volume of d-dimensional
sphere of radius k

7].d/2 J
Qq(k) = m (6.0.45)
Where I'(z) = (z — 1)! is the Euler gamma-function. Note
I'(n+ %) = (fn—?:l)"\/? forn € Z* (6.0.46)
Thus we find A 2 i
B _(2k7r)kd [(mg + Zkk2)2:| I'(2+1) 4 (6.047)

20

6 APPENDIX B

Our second flow equation is then given by

—)\kzk k2+d
(2y/m)IT (£ + 1) (mj, + 2k?)?

(6.0.48)

2
atmk =

Plugging the regulator into Eq. (6.0.38) gives

2
O = ooty [[+ ik + 20—)0 - 7)) 220K — 1)

(2m)
(6.0.49)
— 6)% d? 2 2 L2 2\) 3 L2
T 2r)d e p [(ka +mj, + 2 (K = p%) " 2 } (6.0.50)
p
2 k’2
p2<k? my, + 2k
We are left with our final flow equation
22 L2+d

B = ——— (6.0.52)

(2y/m)9T (£ + 1) (M + 2k?)3

We can perform a redefinition of the couplings to obtain dimensionless S-functions
S\k = k‘d74)\k —)\k = j\kkzlid (6053)
my = k7*m; — m; = mik® (6.0.54)

We have

d - d - _ d -
O\ = ke (Ak™ ™) = k <(4 —)k + k‘*‘dﬁkk) =K'k ((4 —d)X, + k%m)

. (6.0.55)
6A% 24 R 2B 2d)2Hd 5 6.0.56)
2y (5 +1) (mi 4+ 2k2)* (2y/m)IT (§ + 1) (Mpk? + zk?)? o
A2k
= [(6.0.57)

(2y/T)IT (£ + 1) (M2 + 2,)*

21

6 APPENDIX B

Equating both sides leaves us with the first dimensionless flow of interest

= 65\22k -
O\ = k — (4 —d)\ 6.0.58
R T (£ 1) (M2 + 2)3 (4= ()

We also have 4 p
om;, = k%(mkﬁ) =k <2kmk + kQ%mi> (6.0.59)
— N2k 2+ B —S\kl{?4_d2k s (6 0 60)
2ym)al (2 +1) (mf + zk?)? (2y/7)T (£ + 1) (mk? + 2k?)? o
— k2

- k2 S (6.0.61)

(V)T (3 +1) (mf + 2)?

Equating both sides leaves us with

_ — Ak 2k _
Oym? = —2m? 6.0.62
CTE T (2@ (€4 1) (M2 +)2 g ()

22

	Functional Renormalization Group
	O(1) Scalar field theory
	4 theory -functions in d-dimensions
	Fixed points

	scalarFRG
	Root-finding
	Newton-Raphson
	Gauss elimination
	newton_raphson(f, x, guess, N = 30, tol = 10e-8)

	class O1(d, n)
	flow_plot(lambdax, lambday, lamxcenter = 0, lamycenter = 0, w=1.5, **kwargs)
	fixed_pts(guess)
	texput()

	Outlook
	Appendix A
	Appendix B

